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SUMMARY

The goal of this study was to develop a simple, yet realistic, model

of the interaction between the turbulent wave and current boundary layers.

Closure of the turbulence problem by an assumed eddy viscosity model was

selected in order to permit analytic solution of the governing equations.

A review of previously proposed eddy viscosity models revealed that

many of them had not been tested against experimental data. Therefore,

three of the more recent models were selected and compared with data from

laboratory experiments and the results of a higher order turbulence model.

The comparison revealed that the model of Grant and Madsen (1979 and 1986)

was the most successful of the existing models. However, the physically

unrealistic, discontinuous eddy viscosity used in this model resulted in a

poor representation of the velocity at the top of the wave boundary layer.

The above deficiency was removed by the development of an improved model,

with a continuous eddy viscosity, that resulted in a greatly improved fit

to the data. While the new model had a more complicated solution, it used

just one fitting parameter, as did all the existing models. However, the

new model was unable to represent adequately the effect of a change in the

angle between the waves and the current. This drawback was due to the

assumption of a time-invariant eddy viscosity made in all the above models.

Therefore, a model that allowed the eddy viscosity to vary in time was

developed. The assumption of a weak current relative to the waves was made

to simplify the governing equation and an approximate solution obtained for

the wave and current velocity profiles. While this model involved much

more algebra than before, the solution for the wave problem was found to be

very similar to that from the time-invariant model. The solution for the

current problem, which involved numerical integration, was simplified by

the development of an accurate analytic approximation.

Finally, the concepts of the modified wave friction factor and

excursion amplitude were u3ed to develop analytic approximations to the

friction factor curves. These simplifications allowed the development of a

procedure whereby pra.tical problems could be solved efficiently using no

more powerful a tool than a hand calculator.



SIMPLE MODELS FOR TURBULENT WAVE-CURRENT BOTTOM BOUNDARY LAYER FLOW

PART I: INTRODUCTION

Background

1. As periodic waves propagate from deep to shallower waters, they

reach a depth beyond which the waves feel the presence of the bottom; i.e.,

the waves experience finite-depth effects. Conversely, the bottom which

generally consists of a movable sediment will from some point on feel the

presence of the wav.s' i.e., the bottom sediments will respond to the

agitation associated with the waves.

2. Finite-depth effects on waves-such as shoaling and depth-

refraction-are generally considered for water depths less than half the

wavelength and are quantified through the use of potential wave theory,

i.e., a theory which, among other things, assumes the fluid to be inviscid.

While the use of potential wave theory is adequate for the prediction of

gross features, such as wave height transformations caused by finite-depth

effects, and the detailed local flow structure, e.g., wave orbital

velocities, over most of the water depth, it fails in predicting the flow

characteristics immediately above the bottom.

3. The reason for the failure of potential wave theory to accurately

predict the near-bottom flow characteristics of a wave motion is associated

with potential theory's treatment of the fluid as ideal (inviscid). Thus,

potential theory allows for (and predicts) a finite slip-velocity to exist

immediately above the bottom, whereas a real (viscous) fluid must satisfy a

no-slip condition at a solid boundary. To obtain a realistic solution for

the flow characteristics in the immediate vicinity of the bottom, it is

therefore necessary to account for real fluid effects and impose the no-

slip condition on the solution.

4. Because of the oscillatory nature of the near-bottom wave motion,

the viscous effect (vorticity) associated with the satisfaction of the no-

slip condition has only a limited time, of the order half a wave period, to

be transmitted (diffuse) away from the boundary. For this reason, the

extent to which viscous, real fluid effects affect a wave motion is limited

to a thin layer-the wave boundary layer-immediately above the bottom,



while the motion farther away from the bottom is adequately described by

potential wave theory.

5. The existence of a thin wave boundary layer across which the fluid

velocity varies from zero (at the boundary) to its free stream value

(predicted by potential wave theory) gives rise to a very pronounced

velocity gradient, or velocity shear, within the wave boundary layer.

Since a high velocity shear within the wave boundary layer is associated

with large shear sti sses, energy dissipation rates, and turbulence

intensities when the flow turns turbulent, it is evident that an ability to

quantify any coastal process which directly or indirectly is influenced by

near-bottom flow characteristics requires an adequate understanding of and

ability to quantify the processes taking place within the wave boundary

layer.

Wave-current interaction

6. In the coastal environment, waves and currents are more often than

not present at the same time; e.g., local winds produce waves and give rise

to wind-induced slowly varying currents, or swell associated with distant

storms arrive in shallow waters where they encounter slowly varying tidal

currents. Thus, a motion characterized as the combined motion of waves and

currents may be considered the most commonly encountered flow condition in

near-coastal waters.

7. While the simultaneous presence of waves and currents in coastal

waters has been recognized in terms of the effect of currents on waves,

i.e., current-refraction, only recently has the potentially important

effect of waves on currents been recognized. The physics of the latter

wave-current interaction, i.e., the effect of the presence of waves on the

characteristics of a slowly varying current, is intimately related to the

processes taking place within the wave boundary layer.

8. To more fully appreciate this interaction, consider the near-

bottom flow associated with a constant forcing, expressed in terms of a

constant shear stress acting on planes parallel to the bottom. For a

turbulent shear flow, the shear stress is supported through the vertical

mixing of high-velocity fluid from "far above" the bottom and low-velocity

fluid from the immediate vicinity of the bottom. The effcctiveness of the

mixing process depends on the turbulent intensities and the velocity shear,

i.e., the scale of the velocity some distance above the bottom. Since the



turbulence intensities immediately above the bottom increase in the

presence of a wave motion, at least within the wave boundary layer, a

smaller velocity shear is required to support the same shear stress when

waves are present than that required in the absence of waves.

9. As a consequence of near-bottom wave-current interaction, the

prediction of the near-bottom current velocity profile is sensitive to the

presence of waves. Similarly, the bottom resistance experienced by a

current of a given magnitude is affected by the presence of waves. In

physical terms, the near-bottom wave-current interaction may be interpreted

as an apparent increase in bottom roughness experienced by a current in the

presence of waves relative to the physical bottom roughness experienced by

the same current in the absence of waves.

Wave-sediment interaction

10. For a bottom consisting of a movable sediment, the response of the

sediment to the fluid flow above the bottom depends on the forcing, i.e.,

the bottom shear stress, exerted on the bottom sediments by the flow.

Realizing that the vertical scale characteristic for a slowly varying

current is of the order of meters while the corresponding scale for a wave

motion, the wave boundary layer thickness, is of the order of centimeters,

it is evident that the velocity shear and hence the bottom shear stress

associated with a given near-bottom wave orbital velocity are far greater

than that associated with a current of comparable "agnitude. For this

reason, waves, rather than currents, dominate fluid-sediment interaction in

the coastal environment.

11. While waves feel and respond to the presence of a bottom when the

depth is less than about half the wavelength, the bottom does not respond

to the presence of a wave motion above until this motion is sufficiently

strong, in terms of the bottom shear stress, to mobilize the bottom

sediments.

12. Once the critical condition for mobilization of the bottom

sediments has been reached or slightly exceeded, an originally flat bottom

becomes unstable. In the case of sediments characterized as fine sands and

coarser, this instability results in the appearance of bedforms, ripples,

on the bottom. For flow conditions exceeding only slightly the critical

condition for initiation of sediment movement, the ripples are quite steep,

sharp-crested, and essentially two-dimensional features aligned with the

10



wave crests. As the flow intensity, i.e., the bottom shear stress, is

increased, a point is reached when the sharp-crested ripples become

rounded, three-dimensional features of smaller steepness. Eventually, the

ripples are completely washed out and the bottom is again flat; however, in

contrast to flow conditions below critical, a "sheet" of sediment is now

moving back and forth above the bottom.

13. From a purely hydrodynamic point of view, the result of wave-

sediment interaction in terms of the formation of ripples means that the

flow in the immediate vicinity of the bottom must be treated either as a

flow over a wavy bottom, including the effect of flow separation over

ripple crests, or as a flow over a plane bottom for which a uniform

roughness, reproducing the flow resistance of the rippled bottom, is

assumed. In either case, the formation of ripples on the bottom

significantly complicates the analysis and requires knowledge of the bottom

bedform geometry or its equivalent roughness scale.

14. From the point of view of establishing a sediment transport model,

it may be argued that an ability to quantify sediment transport mechanics

for a pure wave motion is of minor importance. The argument would be that

the net sediment transport associated with a linear wave, for which the

motion back and forth is completely symmetrical, would consist of equal

amounts of sediment being moved back (under the wave trough) and forth

(under the wave crest) and therefore result in a vanishing net transport.

This argument pinpoints the major problem associated with the prediction of

net sediment transport rates in the wave-dominated coastal environment as

the prediction of a small difference between two large quantities. Thus,

any effect producing an asymmetry in the motion, e.g., wave nonlinearity,

wave-induced mass transport, a sloping bottom, or superposition of a

current, potentially results in a net sediment transport. In order to

establish a model for the mechanics of sediment transport in the coastal

environment, it is therefore necessary to first establish a sediment

transport model for a pure wave motion.

Wave-current-sediment interaction

15. From the preceding discussions of wave-current and wave-sediment

interactions, it is evident that the physical bottom roughness experienced

by a combined wave-current flow is a dependent variable in that it depends

on the characteristics of predominantly wave-generated bottom bedforms.

11



Thus, in a purely hydrodynamic sense, wave-current-sediment interaction

manifests itself through the production of a physical bottom roughness

resulting from bottom sediment response to the near-bottom flow above.

16. From the point of view of sediment transport mechanics in the

coastal environment, the presence of waves acts primarily as an agitating

agent, which mobilizes the bottom sediment and makes it available for

transport by currents superimposed on the waves. Because of the high

turbulence intensities within the wave boundary layer, sediment, in

particular fine sediments, will be put into suspension and made available

for suspension by the turbulence associated with the current outside the

wave boundary layer. In this respect, the increased flow resistance

experienced by a current in the presence of waves results in an increase in

turbulence intensities associated with the current. Thus, waves not only

make bottom sediment available for transport by a current but also increase

the current's ability to transport through their generation of bottom

bedforms, i.e., an increased physical bottom roughness, and through

turbulent near-bottom wave-current interaction corresponding to an

increased apparent bottom roughness.

17. In addition to the effects of wave-current interaction on

turbulent mixing processes and thereby its effect on the vertical

distribution of sediment concentration, wave-current interaction also

affects the velocity with which the suspended sediment is advected through

the wave-current interaction's effect on the current velocity profile. In

this respect, the extent of wave-current-sediment interaction-described

above as a one-way street in which interaction affects hydrodynamics which,

in turn, affects sediment transport-potentially may be further complicated

by the suspended sediment producing a vertical density gradient of

sufficient strength to necessitate the treatment of the fluid-sediment

mixture as a "stratified fluid."

Objective

18. The overall objective of the present research is to develop a

comprehensive model of wave-current-sediment interaction consisting of the

elements identified and briefly discussed in the subsections of the

preceding section.

12



19. The emphasis is on the development of a model which is internally

consistent and based on physically sound principles. In addition,

simplicity of model formulation and application is required in its

development so long as simplicity does not sacrifice the overall accuracy

of the model.

20. The requirement of internal consistency may be illustrated by

recognizing that the wave-current interaction model component ultimately is

to form the basis for the sediment transport model component. Since the

state of the art of sediment transport mechanics unfortunately is far from

being regarded as an "exact science," it is therefore not internally

consistent to seek an exact solution to the wave-current interaction

problem-even if this were possible. Combining this with the requirement

of simplicity of application rules out the appropriateness of elaborate,

sophisticated numerical models and justifies an emphasis on the development

of analytical model components whenever possible.

21. Thus the overall objective of this research is to provide a

comprehensive, computationally simple model for rapid solution of sediment

transport processes associated with dredging operations, e.g., prediction

of the fate of dredged material placed on the sea bottom in disposal

operation and infilling rates of dredged navigation channels.

Scope of This Report

22. The scope of this report is to present a simple, yet realistic and

accurate model for the calculation of the near-bottom turbulent flow

properties associated with the combined action of waves and currents.

23. Following a discussion of the basic physical principles underlying

a hydrodynamic model of near-bottom turbulent boundary layer flows (Part

II), some previous eddy viscosity models used in these flows are reviewed

in Part III. The results of the selected models are compared with

available experimental data-both physical and numerical-and their

strengths and weaknesses are discussed.

24. An improved model based on a time-invariant eddy viscosity model

is presented in Part IV. This model represents an improvement over

currently available simple wave-current interaction models in that it

removes a physically unrealistic discontinuous eddy viscosity and extends

13



the model applicability to any reasonable magnitude of the current velocity

relative to that of the wave orbital velocity. The former of these

improvements should remove some unrealistic features of discontinuous eddy

viscosity models when these are applied as the basis for sediment transport

calculations. The latter removes the limitation of the current being

either weak or strong relative to the wave motion; i.e., it makes the

resulting model generally applicable. The results of this model are also

compared with the same data used in Part III.

25. In Part V, the lack of physical realism of a time-invariant eddy

viscosity applied to the wave-current interaction problem is removed by

treating it as time-varying. Despite the added mathematical complexity

introduced by this assumption, an approximate analytical solution has been

obtained. The wave part of this solution is adequately represented by the

solution obtained in Part IV; i.e., the time-invariant eddy viscosity

solution of Part IV serves the dual purpose of being an approximate model

in its own right and forming part of the improved solution presented in

Part V. The significant feature of the time-varying eddy viscosity

formulation is a much more pronounced and physically realistic dependency

of the current velocity characteristics on the angle between wave and

current motion than found in the time-invariant eddy viscosity formulation.

26. In Part VI, a simple procedure is outlined whereby the time-

varying model of Part V is applied to calculate the current velocity

profile for specified wave and current parameters using a no more powerful

tool than a hand calculator. Finally, the result of the wave-current

interaction models developed in this report are summarized and discussed in

Part VII.

14



PART II: DERIVATION OF THE GOVERNING EQUATIONS

27. In this chapter, the linearized equation of motion for the bottom

boundary layer associated with waves is developed. The specification of

the bottom properties by a single equivalent roughness height is discussed

along with its use in determining the level of application of the no-slip

boundary condition. Various methods of closure for the problem of

turbulent flow are discussed. Finally, the assumption of a time-invariant

eddy viscosity is used to separate the problem into a wave component and a

current component that can be solved for any assumed distribution of the

eddy viscosity.

Boundary Layer Approximation

28. The equations governing a two-dimensional flow of an

incompressible, homogeneous fluid over a plane boundary may be written

du du au 1 ap d(Txx/P) 0(Tzx/)T + uF + w = + -x -- z i

Ow aw aw 1 ap - (Txz/p) +(Tzz/p)
Ft+ u-ax + WFz = _8_zz - g  +  dx + - Z (2)

z z

au Dw
x +  z = 0(3)

where

u = the horizontal (x) velocity components

w = the vertical (z) velocity components

P = fluid density

p = pressure

g = acceleration Jue to gravity

Tij = Tji = turbulent or viscous stresses

29. To simplify this set of equations, an order-of-magnitude analysis

is performed in which it is assumed that
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u = 0(U) and Tfl =(U) (4)p

while time and horizontal distances are scaled by the wave motion,

W = 2r/T = radian frequency and k = 27/L = wave number , and the vertical

length scale is the wave boundary layer thickness, 6 , so that

F = O(W) -Fx O(k) -F =  O(l1/) (5)

30. Introducing these scales in the continuity Equation 3 gives

oT-j + 0[I-J = kU + W/o = 0 (6)

From Equation 6 the order of magnitude of the vertical velocity

W = O(w) = (k6)U < U (7)

is obtained, and its smallness relative to U is a consequence of the

boundary layer assumption, kb C I

31. Comparison of the orders of magnitude of the nonlinear convective

acceleration terms on the left-hand sides of Equations 1 and 2 with the

leading linear terms, e.g.,

Ful kU2  0aul = WU (8)

shows that the order of magnitude of the nonlinear terms relative to the

linear terms is given by

0 U <

orM.TU/L Ft] = kW 1 (9

which is identified as the small parameter, U/c , c = W/k is the phase

velocity of the wave, used in the Stokes expansion of a water-wave problem,

e.g., Ippen (1966).

32. Introducing the order-of-magnitude estimates obtained above in the

vertical momentum equation, Equation 2, this may be written as
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=- ZZ + g = O(WW + kU) (10)

dz

which may be integrated from some level z , within the wave boundary

layer, to the outer edge of the wave boundary layer, z = 6 where p =p

and Tzz = 0 , to produce an expression

=p_ + - + g(6-z) + 0[(WW + kU2)(O-z)] (11)
p p p

for the pressure within the wave boundary layer.

33. Differentiation of Equation 11 with respect to x , recalling that

6 # 6 (x) and d/dx = O(k) , results in

1 ap 1 8(p.+Tzz) 2
P- = p - x + o[(WW + kU*)ko] (12)

34. Inspection of the last terms in this equation in conjunction with

the order-of-magnitude estimate provided by Equation 7 shows that

i ap = 1 0x + 0 WU(k6 )2 + WUJ*(k6) (13)

35. When this expression is introduced in the horizontal momentum

equation, its components should be compared with the terms in this

equation. This comparison shows that the first term neglected by

discarding the last term in Equation 13 is at most of order (kb) 2 relative

to the leading term au/at = O(WU) in Equation 1, while the second term is

of order k6 relative to the convective acceleration terms, uau/ax =

O[WU(U/c)] , so long as U* < U , which may safely be assumed. Thus, a

boundary layer approximation to the governing equations is obtained as

au Ou du 1 dp" 1 dTxZ 1 d(Txx-Tzz)
+ uT- + wF - Jx- + -T +  Ox (14)

with an order of accuracy of (k6) 2 ; i.e., the largest terms neglected are

of the order (k5)2 relative to the leading terms retained.

36. Although the last term in Equation 14 involves the difference

between two terms of the same magnitude, cf. Equation 4, this term must be
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2
considered of order kU* . This, however, is of order k6 relative to the

preceding term, a(Tzx/P)/laz = O(U*/b) , so within the accuracy of linear

wave theory, i.e., dropping the convective acceleration terms, the

linearized boundary layer approximation is

au 1 p (2t (15)
= P 3 +X (15)

where the subscript notation on the turbulent or viscous stress on

horizontal planes has been omitted, since this distinction no longer is

necessary.

37. At the outer edge of the wave boundary layer, shear stresses

vanish and therefore

1ua =  ap . (16 )

where the subscript denotes conditions at the outer edge of the wave

boundary layer, z . This equation is identical to the equation

governing the near-bottom orbital velocity in linear, potential wave

theory, e.g., Ippen (1966)

- aW cosh(k6)cos(Wt - kx) (17)

u sinh(kh)

where a is wave amplitude and h is water depth. At first, it may appear

that the value of 6 needs to be specified in order to determine the

pressure gradient driving the flow within the wave boundary layer.

However, expanding cosh(kb) around z = 0 results in

cosh(k6) = 1 + l(k6)2 + -.. (18)

and to the same order of accuracy as the boundary layer approximation

itself, recall terms of order (kb)2 were neglected in order to obtain

Equation 14, it is therefore permissible tc replace cosh(k6) in Equation

16 by unity. Therefore
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aW
u. = ubcos(Wt - kx) = cos(Wt - kx) (19)sinh(kh) csW x

is identical to the bottom velocity predicted by linear potential wave

theory.

38. Returning to the order-of-magnitude estimates made earlier, the

velocity scale for horizontal velocities, U , is identified as ub , the

near-bottom velocity predicted by linear wave theory. Furthermore, in the

immediate vicinity of the bottom, the left-hand side of Equation 15

vanishes because of the no-slip condition, and balancing the order of

magnitude of the remaining terms shows that

6-0~ (20)

or since U, is at most expected to be of order U , Equation 20 shows that

O(k6) ! O[0 (21)

which ensures that the approximations made in the derivation of the

linearized boundary layer approximation are internally consistent.

39. Inclusion of a steady current superimposed on the wave motion

would have resulted in the same linearized boundary layer approximation of

the governing equations provided the current velocity is scaled by U = ub;

i.e., so long as the current velocity is not an order of magnitude larger

than the wave orbital velocity.

40. The boundary conditions for Equation 15 are the no-slip condition

on the bottom and the requirement that the velocity inside the boundary

layer u should approach the external velocity u, at the edge of the

boundary layer.

41. The no-slip condition is imposed by requiring

u = o at z = zo (22)
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where zo reflects the resistance offered by the bed to the flow. The

specification of zo will be discussed in the next section. The other

boundary condition is imposed by requiring

U -4 u as z -) O (23)

42. Here z is taken to be the vertical coordinate scaled by the

boundary layer length scale 6 . Since the scale is usually much less than

the depth of flow this condition constrains the effect of the boundary

layer to a small proportion of the depth.

Bottom Boundary Roughness

43. For turbulent flow over a rough surface, the boundary resistance

experienced by the flow is produced by form drag (separation and eddy

formation) and skin friction (direct shear stress) associated with the flow

around individual roughness elements. Thus, the flow in the immediate

vicinity of a rough bottom is in principle nonuniform. This condition is

true also for a so-called steady uniform turbulent flow over a rough

boundary consisting of, say, immobile sand grains, if one takes a

"microscopic view" of the flow within a distance of the roughness scale of

the boundary. However, farther away from the boundary the eddy motion can

no longer be distinguished as associated with a particular roughness

element; i.e., it becomes random in nature and may be interpreted as

"turbulent" eddies.

44. For distances farther away from the boundary than the physical

scale, kb , of the individual roughness elements, the commonly accepted

characteristics of turbulent shear flows apply; i.e., one may expect the

mean flow, u , to have a logarithmic profile and be given by (Schlichting

1968)

u = U~ilnZ (24)
K z
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where

u* = [Tb/P = shear velocity

Tb = bottom shear stress

= von Karman's constant (K = 0.4)

z = height above bottom

zo = measure of the boundary roughness

45. For a flow over a plane boundary consisting of uniformly

distributed, closely packed immobile sand grains, as in Nikuradse's (1932)

extensive experiments, it is natural to choose the boundary roughness

scale, kb , equal to the sand grain diameter, d . In this case,

kb = kn = d with knl denoting the equivalent Nikuradse sand grain

roughness of the boundary. With this interpretation of kn1 , the velocity

profile given by Equation 24 holds with

kn/30 for rough turbulent flow 70 < u*kn
V

Zo = - V (25)
3.3V/u*)/30 for smooth turbulent flow ukn < 5

where the generalization to cover smooth turbulent flow-V denotes the

kinematic viscosity of the fluid-has been introduced according to

Schlichting (1968).

46. It is important to keep in mind that Equation 24 is valid only for

distances, z , from the boundary exceeding the physical scale, kb , of the

boundary roughness. Thus, the prediction of u = 0 at z = zo which

follows from Equation 24 is purely formal and obtained by extrapolation

from the outer flow region. In fact, even the origin of z is not readily

defined for a rough boundary. Fortunately the choice of location of

theoretical bed, i.e., z = 0 , affects the velocity predicted by Equation

24 significantly only for small values of z , where the solution, as

pointed out above, merely represents a mathematical continuation of the

outer flow.

47. While the physical interpretation of the scale of the physical

boundary roughness, kj) , and the equivalent Nikuradse sand grain

roughness, kil , as the sand grain diameter, d , for flow over a plane

bottom is a natural one, the situation is considerably more complicated if
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the bottom profile is nonplanar, i.e., if it exhibits features that are

large in comparison with the small distributed roughness elements

considered above. An example of this situation would be a rippled bed as

produced by waves propagating over a bottom consisting of movable

sediments.

48. The flow around large-scale distributed roughness features

contributes to the flow resistance experienced by the fluid above in much

the same manner as discussed for the small boundary roughness; i.e., the

large-scale bottom features produce form drag as well as skin friction.

The only difference is the difference in scales of the roughness elements;

e.g., the physical roughness length scale, kb , is now the ripple height

rather than the sand grain diameter. Except for the difference in vertical

scale, the turbulent flow over large distributed roughness features may,

however, be treated in much the same manner as flow over a plane rough

boundary, i.e., with a velocity profile given by Equation 24 and T)

interpreted as the average flow resistance per unit bottom area resulting

from form drag and skin friction. The only difference is that the distance

above the bottom above which Equation 24 is valid as well as the

uncertainty of assigning a theoretical bottom level, z = 0 , now are

scaled by the physical scale of the bottom features, kb

49. The roughness scale influencing the velocity profile, i.e., z0

or k11 , represents physically the scale of uniformly distributed, closely

packed, three-dimensional roughness elements-equivalent sand grains-

which placed on a plane boundary and subjected to the same flow as the

nonplanar bottom would result in the same flow resistance. Thus, if the

bottom features are two-dimensional and oriented perpendicular to the flow,

such as ripples, the form drag on this type of bottom feature would be

expected to be considerably larger than the form drag on a three-

dimensional roughness element. For this reason, it is to be zxpected that

the equivalent Nikuradse sand grain roughness, kT) , corresponding to a

rippled bed would be considerably larger than the physical bottom roughness

scale, k|, * the ripple height Thus, Grant and Madsen (1982) suggest

kn t 4kb for steep ripples.

50. The alternative to the treatment of a nonplanar boundary as a

plane, artificially roughened boundary, is to mathematically account for

the waviness of the boundary. This approach has been pursued for the case
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of a pure wave motion, e.g., Lyne (1971); Sleath (1974, 1976, 1982); S-to,

Mimura, and Watanabe (1984); and Shum (1988) based on an assumption of

laminar flow; and recently by Sato, Uehara, and Watanabe (1986) using a

turbulent closure model. Since the near-bottom flow in the coastdl

environment is likely to be turbulent rather than laminar and to consist of

currents superimposed on waves, these models, which require extensive

computations, are not appropriate for the present model development.

Consequently, the present study treats the bottom as a plane horizontal

bottom of uniform equivalent roughness expressed by kn or zo as

introduced in Equations 24 and 25.

Turbulence Models

51. To solve the linearized boundary layer equation, Equation 15, a

model relating the shear stress, T , to the mean flow characteristics,

must be introduced.

52. For a laminar flow, this relationship is simply

S u dw du (26)Vl.+ yj VV

with V denoting the kineira.ic viscosity of the fluid and the term Ow/x

is neglected since it is of order (ktc)2 r-lative to au/az

53. For a turbulent flow, the shear stress on horizontal planes is in

reality a momentum flux term-the Reynolds stress-which is related to

turbulent velocity fluctuations, denoted by primes, through

- -u w (27)p

where the overbar indicates a time-averaged quantity and the modeiing of

this term is far from trivial.

54. For dimensional reasons, the problem of expressing the turbulent

Reynold's stress may be recast as the problem of predicting a turbulent

eddy viscosity, Vt , which is defined, by analogy to the kinematic

viscosity, through
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r --T-T Oup Vtau (28)

55. Advanced turbulence models consist of separate differential

equations from which Lt is obtained as the product of a length scale-the

mixing length-and a velocity scale obtained from the calculation of the

turbulent energy. Models of this type have been employed recently by Celik

and Rodi (1985); Hagatun and Eidsvik (1986); Juste.en (1988); and Davies,

Soulsby, and King (1998 for the treatment of wave-current interaction.

While these numerical turbulence closure models at present are far too

computationally involved and time-consuming to be of practical use as the

uasis for a general wave-current-sediment interaction model, they serve the

purpose of providing excellent and detailed results against which far

simpler models may be tested.

56. A simple model for the turbulent Reynolds stress may be obtained

using Prandtl's mixing length hypothesis (Schlichting 1968) in which it is

assumed that

- U1 z  and w' = (29)

so that

- = -u'w' = t2 d T (30)

with t2 = denoting Prandtl's mixing length. From analogy with steady

turbulent flow it may be assumed that £ = Kz , where K is von Karman's

constant, at least close to the bottom.

57. Bakker (1974) followed by Bakker and van Doorn (1978), and van

Kesteren and Bakker (1984) used a mixing length closure formulation, as did

Asano and Iwagaki (1986), to obtain solutions to the turbulent wave-current

interaction problem. While computationally far less involved than the

numerical turbulence closure models mentioned previously, the mixing length

models require numerical solution of the governing equations in order to

provide results. This requirement limits their usefulness for general
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application, although results obtained in this manner may be used for

comparison with simpler analytical models.

Eddy viscosity models

58. Rather than assuming u' and w' both to be scaled by the mean

velocity gradient, one may assume that u* = IITbip , at least very close

to the bottom, scales w' . This assumption results in Equation 27

becoming

T du
-P = -u'w = eu, z (31)

in which Iu* is identical to the turbulent eddy viscosity, V t , defined

by Equation 28. With f being the mixing length, comparison of Equations

28, 30, and 31 shows that

Vt= 2 du
1 =  = Iu, (32)

which is an identity when u is taken as the logarithmic velocity profile

given by Equation 24 and e = z

59. The preceding considerations suggest that the turbulent eddy

viscosity should vary according to

Vt = Ku*z (33)

with

u*= Vbi/P (34)

in the immediate vicinity of the bottom. In this respect, it is of some

interest to note that the condition of Vt varying according to Equation 33

as z - 0 is used as a boundary condition in numerical turbulence closure

models.

Use of a time-invariant eddy viscosity

60. Since the problem of the wave boundary layer is unsteady, it would

be expected that the eddy viscosity defined by Equation 28 and expressed in

terms of a mixing length arguments through Equations 32 and 33 would be a

function of time. Thus, if a pure first-order wave motion in considered,

the bottom shear stress may be expressed as
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Tb = Tbmlf(t)If(t) (35)

in which Tbm denotes the maximum bottom shear stress and its temporal

variation is formally expressed by If(t)lf(t) about which it is known

oniy that If(t)I = 1

61. Introducing Equation 35 in Equations 34 and 33 yields a time-

varying eddy viscosity given by

Vt = u*zlf(t)l (36)

in which u*m = /Thi/P is the shear velocity based on the maximum bottom

shear stress.

62. All arguments presented so far for the functional form of the

turbulent eddy viscosity have invoked assumptions applicable to the

immediate vicinity of the bottom, i.e., for z < zo. For this region, the

linearized governing equation, Equation 15, may be integrated to give

z

T - Tb = P + ap-- dz L 0 (37)

zo

or

T Ku*mz~f(t)I du = ) Um21f(t)If(t) (38)

valid for z < z0 .

63. Equation 38 may be solved, subject to the no-slip condition at

z = zo , to give the velocity profile in the immediate vicinity of the

boundary

u = U*M ln--f (t) (39)
X zo

64. The exact same equation for the near-bottom velocity at the time

it is maximum, i.e., when f(t) is unity, can be obtained if the time-

varying eddy viscosity given by Equation 36 is replaced by a time-invariant

eddy viscosity based on the maximum bottom shear stress. In this case
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Vt = iU*mZ (40)

and the near-bottom velocity

U = U~m Inz  I f(t) If (t) (41)

X zo

is obtained.

65. Comparison of Equations 39 and 41 shows the maximum near-bottom

velocity [f(t) = 1] to be independent of whether a time-varying or a time-

invariant eddy viscosity is used so long as the time-invariant eddy

viscosity is scaled by the shear velocity obtained from the maximum bottom

shear stress. While heuristic in nature, the preceding argument serves to

support the adoption of a time-invariant eddy viscosity formulation, based

on the maximum bottom shear stress, for the solution of unsteady turbulent

wave boundary layer flows.

66. The use of a time-invariant eddy viscosity greatly simplifies the

computational aspects of the problem. It is shown in the next section how

this assumption allows the governing equation to be conveniently separated

into a wave component and a current component.

67. Eddy viscosity profiles that are scaled as in Equation 33 by the

shear velocity and a length scale have been used to obtain a simple

analytic solution for steady turbulent flow problems. Kajiura (1964, 1968)

has found that the use of a time-invariant eddy viscosity is sufficient to

capture the gross features of the wave boundary layer. For these reasons,

this study will be restricted to time-invariant eddy viscosity

distributions. The evolution of such models for the wave and wave-current

problems is discussed in Part III.

Equations for Waves and Current

68. Using the idea of a turbulent eddy viscosity as defined in

Equation 28 in Equation 15, the governing equation can be written as

1 or i
= - + [Vt (42)
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where

u = {u,v} = horizontal {x,y} velocity vector

V = {8 /Ox, d/Oy} = horizontal gradient operator

p = fluid density

p = pressure

z = height above bottom

69. Separating the variables, u and p , into time-invariant

(current) and time-varying (wave) components, i.e.,

.4 4
u = uc+

P = Pc + Pw (43)

it is quite simple, since Vt is assumed time-invariant, to separate the

governing equation into two equations: one governing the waves

T -pVpw + z[Vyt (44)

the other governing the current

0 -- Vpc + (4)

Equation governing the waves

70. Without loss of generality, the wave is assumed to propagate in

the x-direction so that iw = Uw Furthermore, the wave pressure gradient

may be expressed in terms of the near-bottom velocity predicted by linear

wave theory as shown in Equation 16, i.e.,

t U _ 1 Pw (46)

where

u ubcOsWt = (AI)W)cosWt (47)
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71. Introducing Equation 46 in 44 and making use of the fact that

u0 # u00(z) , so that duw/dz = d(uw - u.)/dz , the equation governing the

wave orbital velocity within the wave boundary layer may be written

8 (Uw - u") = da vt(uw - u) (48)it- I dz (48

72. Since this equation is linear and since Lt is time-invariant,

the simple harmonic forcing suggests that the solution of Equation 48 is

simple harmonic. It is therefore convenient to employ complex variables

and assume

UW - U = Re{udeit} (49)
ub

where Re{ } denotes that the real part of the complex solution represents

the physical solution sought, i = F , and udj is a complex function of

z .

73. Introducing Equation 49 in 48 and dispensing with the explicit

reminder that only the real part of the complex expression makes physical

sense leads to the equation governing the orbital velocity within the wave

boundary layer for a simple periodic wave

d . dud] (50)

74. Since both Equations 44 and 45 are linear, uc and Uw will both

have to satisfy the bottom boundary condition, given by Equation 22,

individually. The upper boundary condition for the wave problem will still

be as in Equation 23 since the wave boundary layer is expected to be small

even in the presence of a current.

Equation governinq the current

75. Denoting the magnitude of the current velocity vector by

u: = ld = u(z) Equation 38 may be written

a [ du = V [ (51)
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which may be integrated from the bottom, z L 0 , where vtauc/az = Tc/P , to

a level z in order to obtain

duc Tc + (5)] Iz
td = + V52

76. Realizing that the near-bottom flow is limited to a fraction of

the total depth, h , over which the average shear stress varies from its

maximum value of 7( to zero, the second term on the right-hand side of

Equation 52 is of the order (z/h) < 1 relative to Tc/P . Thus, the

pressure gradient term in Equation 52 may be neglected, and the resulting

equation governing the current-often referred to as "the law of the wall"

(e.g., Schlichting 1968)-becomes

duc TC 2Vt dz u, (' (53)

with u*c = 7p denoting the shear velocity associated with the current

boundary shear stress.

77. Equation 53 is a first-order equation and requires only one

boundary condition. The appropriate condition is the no-slip condition,

Equation 22, which will give the effect of the boundary on the current

flow.

78. Equations 50 and 53 can now be solved for any assumed vertical

distribution of the eddy viscosity to give the wave and current velocity

profiles. This procedure will be carried out in Parts III and IV.
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PART III: REVIEW OF PREVIOUS MODELS

79. In this part, the development of eddy viscosity models scaled by

the shear velocity for the wave current problem will be reviewed. Three of

the more recent models will be discussed in detail, and the results

obtained compared with experimental data.

Development of Eddy Viscosity Models

80. The first application of a turbulent eddy viscosity scaled by the

shear velocity to a wave boundary layer was done by Kajiura (1964). He

used an eddy viscosity that increased linearly with distance from the

bottom analogous to the distribution used successfully to model steady

flows. A modification was presented to account for boundary layers in the

smooth and intermediate turbulence regimes. Using these models, he

obtained graphs for the wave friction factor for various flow regimes that

were in good agreement with existing experimental data. In a later

publication, Kajiura (1968) proposed a tri-linear form of the eddy

viscosity for the wave boundary layer.

81. An important feature of these models-and of most of the

succeeding ones-was that the eddy viscosity was considered to be time

invariant. This allowed a relatively simple solution to be obtained and,

as shown in Part II, makes it possible to separate the wave-current problem

into wave and current components making the solution of both more

straightforward. Another feature of the 1968 model was that the eddy

viscosity was scaled by a shear velocity based on the maximum shear stress

rather than a representative "average" value.

82. The first application of this kind of eddy viscosity model to the

wave current problem was made by Lundgren (1972). He considered a two-

layer model with the flow in the upper layer influenced only by the current

eddy viscosity while the flow in the lower layer was affected by the

turbulence (and therefore the eddy viscosities) due to both wave and

current. The combined eddy viscosity in the lower layer was obtained by

the vector sum of the wave and current eddy viscosities which were scaled

by their respective shear velocities. The current eddy viscosity was

calculated according 1c the parabolic distribution used in steady open
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channel flow while that for the wave was obtained from an empirical

expression based on measurements in the pure wave boundary layer made by

Jonsson (1963 and 1966). These measurements show that the assumption of a

linearly varying eddy viscosity close to the bottom is correct. However,

the values decrease exponentially beyond a certain height above the bottom.

The current velocity profile was obtained by the numerical integration of

the resulting expressions. Here too the wave eddy viscosity was considered

time invariant and was scaled by the maximum shear velocity.

83. The later models differ from Lundgren's model in the vertical

structure of the eddy viscosity distribution and also by the use of

different definitions of the scaling shear velocity. Smith (1977) also

proposed a linearly increasing eddy viscosity scaled by the sum of the wave

and current shear velocities inside the wave boundary layer. Outside this

layer, the current shear velocity was used while keeping the eddy viscosity

continuous at the interface. This allowed the current velocity profile to

be expressed analytically.

84. The first model that allowed for any angle between the wave and

the current and that scaled the eddy viscosity by both the waves and the

currents inside the wave boundary layer and the current alone outside the

wave boundary layer was that of Grant and Madsen (Grant 1977; Grant and

Madsen 1979). Their eddy viscosity was discontinuous at the outer edge of

the wave boundary layer, and the solution for the current was sensitive to

the definition of this outer edge. Some minor modifications to this model

were proposed by Christofferson and Jonsson (1985) while retaining the

discontinuity in the eddy viscosity. They also proposed a model with a

constant eddy viscosity inside the boundary layez for very rough flows.

85. Further models were proposed by Tanaka and Shuto (1981) and

Tanaka, Chian, and Shuto (1983). They used the combined shear velocity to

scale the eddy viscosity over the entire depth with a one-layer (1981) and

two-layer (1983) vertical structure.

86. In the following sections, three of these models will be presented

in some detail and compared with experimental results. The models are a

simplified version of the Grant-Madsen model (referred to as the GM model),

the model proposed by Smith (1977) (referred to as the SM model), and the

model proposed by Tanaka, Chian, and Shuto (1983) (referred to as the TS

model). Also described is a higher ordez numerical turbulence closure
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model presented by Davies, Soulsby, and King (1988) which is later used as

a source of data to use in comparing the performance of the various simple

models.

The Grant-Madsen Model

87. The GM model uses the following time-invariant eddy viscosity

variation.

IU*CW z <
Vt = (54)L u~c > e

and the boundary layer thickness f was defined by

= 7u cw 
(55)

where 7 is a parameter .efining the height of the wave boundary layer.

Grant (1977) and G and Madsen (1979) suggested a value of 2.0 for 7

while Grant and .- .3en (1986) suggested a value between 1.0 and 2.0.

88. Ir Grant (1977), u*(: and u*(:w were defined by time averaging

the total oottom shear stress and the absolute value of the total shear

stress, respectively. However, in the definition of the maximum wave shear

stress that was used to close the problem, the value of u*cw was based on

the maximum total shear stress. In the model presented by Grant and Madsen

(1979), a u*cw based on the maximum shear stress was ,,sed throughout the

derivation.

89. The original GM model assumed a time-invariant eddy viscosity

which would result in a sinusoidal variation of the bottom shear stress.

For this reason their assumption of the bottom shear stress being

proportional to Icos(Wt)lcos(Wt) is actually inconsistent with their

model formulation. This inconsistency was removed in the formulation given

in Grant and Madsen (1986) where u*(- and u*(,w are defined directly from

the current bottom shear stress and the maximum bottom shear stress. This

was also the formulation given in Wiberg and Smith (1983). The new

formulation makes the implementation of the model much less complicated
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while giving results that are within 10 percent of the results obtained

from the full model. However, the full model did indicate that the

reference current velocity within the wave boundary layer was not in the

same direction as the mean shear stress. This aspect of the problem is not

brought out by any of the time-invariant eddy viscosity models considered

in this study, while it is present in higher level turbulence closure

models.

90. The combined shear velocity is defined by

T= F (56)
p

where Tm is the maximum wave current bottom shear stress. If Tw is the

maximum wave shear stress, TC. the average current shear stress and Scw

the angle between the wave and the current, Tul is given by

., = (Tw + T(-cos ('W , T(7sino(,w) (57)

and therefore

TI 11 1 = (7"W. 2 + T1.2 + 2T(Twcoso(:W)2
I

= Twm(l + 2A 2cos c(.w + A4), (58)

where

A = 'T = (59)T~w U*w

is a parameter expressing the relative magnitude of the turbulence

intensity induced at the bottom by the current and the waves.

Wave problem

91. The equation to be solved is Equation 50. In the GM model, the

wave problem is solved by assuming a linearly increasing eddy viscosity for

the whole depth. Substituting this variation into Equation 50 gives

d cuw.zd' j] - iWuj = 0 (60)
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92. This equation can be simplified by scaling the vertical coordinate

by the boundary layer scale 6 and introducing

(61)

where

6 KU*CW (62)

W

93. Substituting Equations 61 and 62 into Equation 60 leads to

S[(du + i3ucj = 0 (63)

which is recognized (Hildebrand 1976, p 153) as a special form of the

Bessel equation that has a general solution expressed in terms of the

Kelvin functions of zeroth order. The solution for ud in Equation 63 can

be written as

u(j = A[ker(2VT) + i kei(2T)] + B[ber(24) + i bei(2vT)] (64)

where A and B are complex constants to be determined from the boundary

conditions. These are given by Equations 22 and 23. Equation 23 is

satisfied only if B = 0 since the functions ber and bei become

exponentially large for large argument (Abramowitz and Stegun 1972,

Chapter 9). Equation 22 then results in

A(ker(2VrCO) + i kei(2V )] = -1 (65)

from which the solution for u( is obtained as

ud = -(ker(2V4) + i kei(24)] (66)

ker(2V<) + i kei(2IT)

94. Recalling the definition of udj , Equation 49, the solution for

the wave velocity uw is found to be
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U= UbRed1i ker(2VT) + i kei(2V/ ) ]le1atl (67)

ker(2VT) + i kei(20)j i

95. To close the problem, the definition of the maximum wave bottom

shear stress is used to write

=-- max tvJ (68)

which, using the definition of ud in Equation 49, can be written as

_ = U*w 2 = ub t u(Iz=z (69)

96. Substituting for Vt from Equation 54 gives

U*w 2  *KUIcwUb[( IT(]z=z (70)

and considering Equation 66 this can be written as

U*w 2 = Ku*(.wu)VO A(ker'(2V ) + i kei'(2VO)]I (71)

where the primes denote differentiation with respect to the argument of the

function and A is given by Equation £5. It is seen from Equations 56 and

58 that if uc and OCW are known this equation is an implicit equation

for u*w

Current problem

97. The relevant governing equation in this case is Equation 53, where

Pt is given by Equation 54 for the current velocity profile. As stated

before, i , the height of the wave boundary layer, is defined by

1 765 (72)

where 5 is defined in Equation 62. This leaves 7 as an unresolved model

parameter that can be determined by fitting, e.g., exerimental data.

98. For the region z < 76 the solution to Equation 53 is found as
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u C 1 n (73)

after using the no-slip condition at z = zo •

99. For the region z > 76 , the solution is

UC = u~ l + (74)

where C is a constant found )y requiring the velocity to be continuous at

the level e After matching the velocities, the full solution is

r~ c ln I-Iz < 76
Uc = (75)

___uz>7.F6V

u 7[7tz] + u*' ln["J z > 76

Solution of practical problems

100. In the usual application of wave current theory, the wave

characteristics u b and W are known as is the bottom roughness k1n The

current is specified by a mean shear stress, a mean velocity, or a velocity

at a specified height above the bottom. It is generally required to find

U*w and u*cw in order to calculate the velocity profile given by Equation

75.

101. Once the model is chosen by specifying a value of 7 , an

iterative solution procedure must be adopted. This procedure is discussed

in detail in Part VI. For the sake of completeness, it is mentioned here

that the procedure consists of solving Equations 71 and 75 in succession

until the value of u*(:w converges.

The Smith Model

102. Smith (1977) proposed an eddy viscosity model as follows:

K(U*w + u*()z z <
lit = (76 )

Ku*{[z +u z >
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103. While the model presented was limited to co-directional waves and

currents, an extension to the general case could be made by using the

approach of Lundgren (1972). As in the GM model, the wave problem is

solved by assuming that the linear eddy viscosity extends over the whole

depth. The difference here is that the combined shear velocity is obtained

from

U*cw = U*c + U*W (77)

instead of Equation 56. ( is a length scale defined by

S7K*w (78)

104. Smith (1977) originally defined i such that 7 = 1 but as in

the GM model of the previous section, 7 will be left as a free model

parameter. The use of u*w in Equation 78 as compared with u*cw in

Equation 62 should be noted.

Wave problem

105. The problem is identical to that in the GM model, and Equation 71

should be used. The only difference is that u*cw , u*w , and u*c are

related by Equation 77 instead of by Equation 58.

Current problem

106. The equation to be solved is Equation 53 with Vt from Equation

76. After solving this equation using the no-slip condition and matching

the velocity at z = t , the current velocity profile is obtained as

I u*c
2 

ln z <

ICU*CW LZj
uc = (79)

- j in[z + /l z >

where

= [1 + [1O (80)

with A defined by Equation 59.
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107. The solution procedure is the same as that outlined in paragraphs

100 and 101 with the lim, itation to co-directional waves and currents.

The Tanaka, Chian, and Shuto Model

108. Tanaka, Chiang, and Shuto (1983) proposed the following eddy

viscosity profile for both the wave and current problems.

• U*CW z < d

Vt = (81)

K [Max (u. - u)dz = Ku*cwd z > d

109. Here K' is a constant taken as 0.016 and u and u are the

horizontal velocities inside, and just outside the boundary layer,

respectively. Tanaka, Chian, and Shuto (1983) use the maximum combined

velocity at the free surface for uO , thus indicating that they considered

the current boundary layer as the relevant one for this integral. zh is

the flow depth. u*cw is defined as in the GM model, i.e.,

U*cw = P (82)

110. This model was presented only for the co-directional case, but

extension to the general case could be made using the formulation given in

Tanaka and Shuto (1981).

Wave problem

111. As in the wave problem of the GM model the governing equation can

be non-dimensionalized by defining ( and 6 by Equations 61 and 62 to

give

d d--I + i 3 u(I = 0 (83)

for the region z < d For the region z > d , the use of the appropriate

eddy viscosity from Equation 81 in Equation 60 results in
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d 2ud iud (84)

where

d 
(85)

112. Now Equation 83 is the same as Equation 63; therefore, for

z < d , we can write

ud = A[ker(2V') + i kei(2VT)] + B[ker(2T) + i kei(2VT)] (86)

and the solution of Equation 84 gives for z > d

ud : Ce C + De -  (87)

where A , B , C , and D are complex constants to be determined by the

boundary conditions and the requirements that the velocity and its gradient

be continuous at z = d

113. Tanaka, Chian, and Shuto use the no-slip condition, i.e., Equation

22, and require

I du ddz 0 at z Z11  (88)

This condition does not appear to be very rea'istic, but, as will be shown

later, is practically the same as the use of Equation 23 for the cases

considered.

114. After using the boundary and matching conditions, the following

four simultaneous equations are obtained for A , B , C , and D

A[ker(2V-) + i kei(240)] + B[ber(2V/C) + i bei(240)] -1 (89)

A(ker(2V0) + i kei(2V0)] + B(ber(2Vf) + i bei(2v0)]

= Ce + De - " (90)

Aker' (20/) + i kei'(2v1 ) ] + B[ber'(2Vf7 ) + i bei' (2Vq)]

: Cv(eV' - DVTe- 1 (91)
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CeN -7 h - De - 7 h = 0 (92)

where

ch = Zh (3
T(93)

115. It is seen from Equation 92 that if (h is large, i.e., if the

flow depth is much greater than the boundary layer scale, C is a very

small fraction of D and setting C to zero would produce a negligible

change in the solution. This is the same as if Equation 23 had been used as

a boundary condition instead of Equation 88. Following the solution for

the constants A , B , C , and D , the problem is closed by defining u*w

as in the GM model, i.e.,

u*w 2 = Iu*cwubtMJP ]z=zo (94)

and, using Equation 86, results in

U*W2 = Ku*cwuj)VI IA[ker ' (2Vrf) + i kei' (2Vr')]

+ B(ber' (2V/) + i bei' (2vf) ] (95)

which is an implicit equation for u*w.

Current problem

116. Again, a solution to Equation 53 with Vt from Equation 81 in

this case is needed. However, for the region z > d , Tanaka, Chian, and

Shuto use a linear decrease of the mean shear stress to zero at the free

surface. This decrease results in the equation

t -u-z = u*,c2[l - (96)Zhj

for the region z > d . Solving Equations 53 and 96 and matching the

velocity at z = d , the current velocity profile is obtained as

ut(:2In zz < d

u = (97)

1jt I dl
-u LoL + In - - 1 + z > d
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Determination of d

117. So far the value of d has not been given explicitly in terms of

the other quantities, but only as the integral in Equation 81. Tanaka,

Chian, and Shuto evaluate this integral by assuming that u. is the

combined wave and current velocity at the free surface and that d is much

greater than z0 . The result is a cubic equation for d which can be

expressed in the present notation as

s = + 2 +  U 2 + u*W (98)

where

B d (99)

Z1h

and 6 is defined in Equation 62.

118. Therefore in the iterative solution procedure, d is also

continually updated by the use of Equation 98.

Numerical Turbulence Model of Davies, Soulsby, and Kinq

119. As mentioned in Part II, solution of the governing equation

(Equation 15) requires a definition of the shear stress term on the right-

hand side. In turbulent flow, this term is actually a momentum flux term

known as the Reynolds stress and is defined by Equation 27. The problem of

expressing this stress in terms of the mean flow variables is known as the

turbulence closure problem.

120. The simplest way of doing this is by defining an eddy viscosity as

in Equation 28 and then prescribing the variation of this quantity in time

and space. This is the method used in the simple models considered in this

study. These models are known as zero equation models and have the

drawback of being able to predict only the gross flow properties.

121. The next step up in complexity is to define the eddy viscosity as

the multiple of a velocity scale and a length scale f . The velocity scale

is taken to be the square root of k -the average turbulent kinetic

energy. An equation for k is then derived in terms of the mean flow

variables with the turbulent energy dissipation ( expressed in terms of

k and £ . The problem is closed by specifying the variation of the length
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scale. These are known as one-equation models and, in common with the

simpler mixing length models described in Part II, have the disadvantage

that the variation of e must be assumed. A further refinement is then to

derive an equation for either C or the mixing length e . This results in

a two-equation model which has been used successfully for two-dimensional

flows.

122. The numerical model used by Davies, Soulsby, and King (1988) is of

the latter kind with equations for k and i in addition to the equations

for the velocity. The boundary conditions used for the k equation are

those of zero energy flux at the bottom and the free surface wiile the

condition on e is that it approaches the value KzO as z approaches

z0 . It can be shown, however, from the k equation and its boundary

condition that very near the bottom k is proportional to the square of

the shear velocity. Taking this in conjunction with the boundary condition

on I and the definition of the eddy viscosity means that the eddy

viscosity is constrained to approach a value proportional to u*zO as z

approaches zo . In other words the eddy viscosity will vary linearly very

close to z0 .

123. This shows that the vertical variation of the eddy viscosity used

in this model is of the same form as that used in all the simple models very

close to the bed. The reasoning behind the use of the linearly varying

eddy viscosity throughout the depth in the GM model is that the variation

close to the bed is the controlling factor in determining the shear stress

rather than the variation away from the bed. If this is the case, the

predicted shear stresses from both models should be similar.

124. However, the numerical model allows for a time-varying eddy

viscosity that is obtained with greater sophistication than in the simple

models. For this reason, the velocity profiles, etc., obtained from the

numerical model are considered to represent accurate solutions to the

governing equations and provide a good data set for comparison with the

results of the simple models.

125. In the implementation of the model, the steady current is

generated first by imposing an oscillating pressure gradient of tidal

frequency. After the initial transients have died away, this is replaced

by a steady pressure gradient and the solution run on until a steady state

is reached. Then the iv-s are applied by imposing an oscillating pressure
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gradient at the wave frequency such that the required wave motion is

obtained after the solution has converged. This condition corresponds in

nature to the driving force behind the current remaining unchanged before

and after the waves. Therefore, the depth-averaged current velocity will

change after the wave motion is imposed.

Experimental Data

126. Many of the models discussed so far have been presented only as

theories with no comparison of results with experimental data. An

exception is the TS model which was compared with experimental data

obtained by Tanaka, Chian, and Shuto (1983) from a wind tunnel. This

experiment will be discussed along with the comparison of the TS model to

the selected data. One reason for the lack of comparisons has been the

paucity of good experimental data from unsteady turbulent boundary layers,

particularly for the wave-current interaction problem.

127. The data available for comparison are of two kinds-physical and

numerical. Physical data are those measured from the laboratory and field.

They are more meaningful in that they are from the real world where all

models must ultimately be applied, but their disadvantage is that the

conditions during the measurement may not correspond to those assumed in

developing the theory.

128. Numerical data are obtained by solving the same governing

equations numerically using sophisticated higher order turbulence closure

models. The conditions assumed are similar to those used for the present

theories; therefore, they provide a good test of the performance of the

simple eddy viscosity closure models in simulating the "exact" numerical

solutions. Furthermore, the numerical models may be able to simulate

conditions that are very difficult to obtain in the laboratory. A good

example of this is the case of waves and a current at an angle. This

condition cannot easily be realised in an ordinary wave flume.

Physical data

129. The wave-current models presented here should, in the limit of a

vanishingly small current, be able to predict the velocity profile under a

pure wave motion. Therefore, three sets of data from wave boundary layers

are chosen for comparison. They are the data sets from Tests 1 and 2 of
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Jonsson and Carlsen (1976)-named JC1 and JC2 for convenience-and the

data set from Van Doom (1981) which is referred to as VDW.

130. Jonsson and Carlsen measured velocities in the turbulent

oscillatory flow near a fixed bed with two-dimensional artificial roughness

elements. The experiments were performed in an oscillating water tunnel,

and the velocities were measured at various heights above a trough in the

bottom roughness by a micro-propeller. The measurements were phase

averaged over many cycles and then smoothed in both z and t The

details of the smoothing were not given.

131. The experimental parameters needed to run the theoretical models

are given in Table 1. Jonsson and Carlsen calculated values of k11 , the

equivalent Nikuradse roughness, and A, the displacement of the theoretical

bed below the top of the roughness elements. However, the values given in

Table 1 are those obtained by Grant (1977), who used a more systematic

analysis and obtained values that scaled more consistently with the

dimensions of the roughness elements. The vertical profile of the phase of

the velocity with respect to the free-stream velocity can also be obtained

from their measurements.

Table 1

Experimental Parameters for the Data Sets

from a Pure Wave Motion

u1 ) k
Data Set cm/s s - 1 cm Al)/kn

JCl 211.0 0.749 1.59 177.2

JC2 153.0 0.873 7.50 23.4

VDW 26.5 3.142 2.10 4.1

DVW05 50.0 0.785 15.0 4.2

DVWIO 100.0 0.785 15.0 8.5

DVW15 150.0 0.785 15.0 12.7
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132. Van Doorn obtained measurements in the boundary layer of a wave

flume with two-dimensional artificial roughness elements. Velocities were

measured at various heights above a crest and above a trough of the

roughness using a laser-doppler anemometer. The value of the equivalent

roughness was determined by measuring the velocity profile of a pure

current flow and finding the intercept on the z axis from a semi-

logarithmic plot of the velocity with height. The theoretical bed was set

at the bottom of the roughness elements. The relative phase of the wave

velocity was also reported. The relevant experimental parameters are given

in Table 1.

133. For the case of waves and currents, the two data sets from Bakker

and Van Doorn (1978) have been selected. These experiments were performed

in the wave flume described in the preceding paragraph. A steady current

was established in the flume by means of a recirculating pump. The inlet

and outlet for the steady flow were 24 m apart. Waves were generated at

one end by a flat wave board oscillating horizontally and absorbed by a

wave damper at the other end. The wave period used was 2.0 sec and the

water depth 0.3 m.

134. For the experiments with waves and a current, the bottom roughness

elements (2 mm high at 15-mm centers) were applied over a distance of 15 m

from the inlet. Velocities were measured using a laser-doppler anemometer

above a crest and above a trough of the bottom roughness. The water

surface elevation was measured using a resistance-type wave gage.

135. The measurements were analyzed using the waves from each wave

train that were present after the start-up transieints had passed and before

the first reflected wave returned. Three wave trains were analyzed for

pump flow rates corresponding to average velocities of 10 cm/sec and

20 cm/sec in the absence of waves. The time-averaged velocities above a

trough were reported for the two flow rates. These sets will be referred

to as BVDIO and BVD20, respectively. The experimental parameters are given

in Table 2.

136. The pump flow rates in these experiments cannot be used as an

indicator of the average flow velocity in the presence of waves. One

reason is that the experimental current velocity profiles plotted in

Figure 5 of the next section show that the velocity increases

logarithmically with height above the bottom only up to a certain level,
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Table 2

Experimental Parameters for the Data Sets

from a Combined Wavr and Current Motion

Ub W ki Ocw

Data Set cm/s s-1 cm Aj)/kjl deg Current Specification

BVD10 25.7 3.142 2.1 3.9 0 uc 8.2 cm/s at z = 4.6 cm

BVD20 24.3 3.142 2.1 3.7 0 u( = 22.4 cm/s at z = 5.9 cm

DV0500 50.0 0.785 15.0 4.2 0 Tc = 3.5 Pa

DV1000 100.0 0.785 15.0 8.5 0 T, = 3.5 Pa

DV1045 100.0 0.785 15.0 8.5 45 T(: = 3.5 Pa

DV1090 100.0 0.785 15.0 8.5 90 7T. = 3.5 Pa

DV1500 150.0 0.785 15.0 12.7 0 Tc = 3.5 Pa

after which it remains nearly constant. This indicates that the current

profile at the measuring station was not fully developed; i.e., the effect

of the bottom had not penetrated all the way to the surface by the time the

flow reached the measuring station. Therefore, requring the depth-averaged

velocity from the theoretical profiles to equal the pump flow rates would

result in an error as the theory assumes fully developed flow.

137. Another reason is that the wave-induced mass transport will cause

a return flow in the flume that opposes the current. This is shown in the

plot of current velocities with and without waves for the same pump flow

rate given in Bakker and Van Doom (1978). For these reasons, it was

decided to select a data point from near the top of the logarithmic region

for each set and require the theoretical profiles to pass through that

point; i.e., the current was specified as a point value rather than as a

depth-averaged value.

Numerical data

138. The results for wave and wave-current flows presented in Davies,

Soulsby, and King (1988) obtained from the model described in the preceding

section are selected for comparison. The case studies of Davies, Soulsby,

and King were performed for an assumed water depth of 10 m and a bottom of

equivalent Nikuradse roughness kj1 = 15 cm The wave period was 8 sec and
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the wave motion was specified by the value of the free stream velocity ub •

The current was specified by the mean shear stress Tc .

139. The model was run for one case of waves alone with ub = 1.0 m/sec

and one case of a pure current with Tc = 3.5 Pa which are referred to as

DVW10 and DVC, respectively. Runs with waves and the current in the same

direction were carried out with Tc = 3.5 Pa and u b = 0.5, 1.0, and

1.5 m/sec (referred to as DV0500, DV1000, and DVl500, respectively).

Finally, two runs were performed with Tc = 3.5 Pa and u b = 1.0 m/sec

with the angle between the wave direction and the mean shear stress at 45

and 90 deg (referred to as DV1045 and DV1090). The parameters needed to

run the theoretical models are given in Tables 1 and 2.

140. The results are presented as profiles of the instantaneous

velocity for different values of the phase of the free-st;am ;elccity for

the cases DVW10 and DV1000 and as profiles of the time-averaged velocity

for all five wave-current cases and the case of a pure current. The

maximum bed shear stresses and phase leads are also tabulated. The maximum

wave bottom shear stress and phase lead for two more cases of waves alone

were also tabulated. These had ul) = 0.5 and ..5 m/sec and are referred to

as DVW05 and DVWl5, respectively.

Comparison of Model Results with Experimental Data

Waves alone

141. For the case of waves alone, the wave part of the GM model can be

used with u*(,w replaced everywhere by u*w • The SM model has the

identical solution for a pure wave motion. Since the TS model does not

have a separable wave component, it will not be discussed here. The

solution for the wave velocity from the GM model is given by Equation 67.

The phase can be found from the argument of the term in the square brackets

in that equation.

142. The comparisons of the predicted wave velocity and phase with the

three data sets from the physical experiments are shown in Figures 1, 2,

ard 3 while the comparison with the numerical data set DVW10 is shown in

Figure 4. It should be noted that the problem of a pure wave motion does

not involve the free parameter 7 .

143. The agreement with all these data sets is quite poor with the

chief drawback being the overprediction of the boundary layer and the
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underprediction of the "overshoot" velocity near the top of the boundary

layer. The phase is also poorly predicted particularly near the bottom.

The prediction of the near bottom velocity is better with the exception of

the set VDW. This set is obtained from an experiment with a very rough

bottom and may be outside the range of validity of the present theory. It

also shows clearly that the velocity near the roughness elements is not

uniform but depends on where the measurement is made.

144. The main problems mentioned can be attributed to the use of a

linearly varying eddy viscosity for the whole depth. As shown in Lundgren

(1972), experimental evidence suggests an exponential decrease after a

certain height. This model leads to too large a value of the eddy

viscosity near the top of the boundary layer. Since the boundary layer

thickness scales with the level of eddy viscosity, this continuous increase

leads to overprediction of the boundary layer thickness. Furthermore, the

increased eddy viscosity leads to smaller velocity gradients for the same

shear stress. This results in the theoretical profile being much smoother

than the experimental profiles as shown in the comparisons.

145. The values of bottom shear stress and phase from Davies, Soulsby,

and King are compared with the values from the GM model in Table 3. Shear

stress is overpredicted by about 20 percent while the phase lead is well

Table 3

Calculated Maximum Wave Shear Stresses and Phase Leads

for the Conditions of Davies, Soulsby, and King (1988)

from the GM Model Compared with the Results

Given by Davies, Soulsby, and King (1988)

Tw (Pa) Phase Lead (deg)

Davies GM Davies GM

Data Set et al. Model et al. Model

DVWO5 8.1 9.7 28.2 29.6

DVW10 23.5 27.8 26.4 27.5

DVW15 44.3 52.0 25.2 26.3
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predicted. The overprediction of the shear stress could be due to the eddy

viscosity being too high.

Waves and a current

146. The current velocity profile for the conditions corresponding to

each data set was calculated using each model. The results for each model

are presented separately.

147. GM model. The comparisons of the results from the GM model and

the data are shown in Figures 5, 6, and 7. Two values of the parameter 7

in Equation 72 have been selected; 7 = 1.5 is in the middle of the range

suggested by Grant and Madsen (1986) wjile 7 = 1.0 appears to give a

better fit overall. Figure 7 shows the results for the case of waves and

currents at an angle. These results will be shown for the GM model only

because it is the only one that made allowance for any angle between The

two.

148. The data set BVD20 and all the sets from Davies, Soulsby, and King

show clearly the existence of two logarithmic regions with a transition

region. This vindicates the reasoning behind the GM model. The set BVD10

does not show the lower region. The discontinuity in the eddy viscosity

results in a kink in the velocity profile at the edge of the boundary layer

while the data show a smooth transition.

149. The current for the sets BVD10 and BVD20 is specified by a

velocity at a certain height; i.e., the program is run until the profile

passes through this point. Since the GM model and the data sets exhibit a

logarithmic velocity profile outside the boundary layer, this specification

means that it is difficult to decide on the "best fit" value of 7 for

these sets. This is seen in Figure 5. In the case of the Davies, Soulsby,

and Kirq profiles the current is specified by the mean shear stress and

different values of ? cause significant variation in the velocity

profiles as seen in Figure 6.

150. However, as shown in these figures, different values of I will

apparently provide a good fit to the data for each of the three values of

uh. A value of 1.5 seems good for the set DV1500 while I = 1.0 fits

DVIO00 well and an even lower value is indicated for the set DV0500. This

is a shortcoming of the model and is a result of the assumed vertical

structure of the eddy viscosity being oversimplified.
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Table 4

Calculated Maximum Bottom Shear Stress for the Conditions of Davies,

Soulsby, and King (1988) from the GM, SM, and TS Models Compared

with the Results of Davies, Soulsby, and King (1988)

Maximum Shear Stress T11, (Pa)

Davies GM SM TS
Data Set et al. Model Model Model

DV0500 13.0 14.7 20.6 14.7

DVIO00 28.0 33.1 44.8 33.5

DV1045 27.0 31.7 -- --

DV1090 24.2 28.2 -- --

DV1500 48.9 57.3 74.6 59.2

151. Another problem is that a change in the current profile with

change in the angle between the wave and the current is hardly brought out

by the MG model as evidenced by the results presented in Figure 7.

152. The results for the maximum bottom shear stress of the data sets

from Davies, Soulsby, and King are compared in Table 4 with the results

from the three models. Since the value of 7 does not come into the wave

problem the maximum shear stress does not depend on 7 when the current

shear stress is specified, as is the case here. The table shows that the

GM model overpredicts the shear stresses by about 20 percent as in the case

with waves alone.

153. The current shear stress in the data sets BVD10 and BVD20 is not

given but is instead determined as part of the solution. Since the

solution for the GM model is logarithmic in the upper layer and this model

fits the data well, the predicted current shear stress can be assumed to be

close to the actual value. The predicted wave and current shear stresses

from the vario.s models are compared in Table 5, which shows that the

results from the GM moaeL for Lhe shear stresses are fairly insensitive to

the value of 7 . This is in agreement with what Grant (1977) found for the

original GM model.

154. SM model. The results from the SM model are presented along with

the experimental data in Figures 8 and 9. Results are shown for two values
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Table 5

Predicted Maximum and Current Shear Stresses from the GM, SM. and TS Models

for Conditions CorrespondinQ to the Bakker and Van Doorn Experiments

Predicted Current Shear Stress (Pa) Predicted Maximum Shear Stress (Pa)

GM SM TS GM SM TS

Data Model Model Model Model Model Model

Set 7=1.0 7=1.5 7=0.1 7=1.0 7=1.0 7--1.5 7=0.1 =1.0

BVD10 0.18 0.22 0.18 0.53 0.44 2.9 3.0 3.8 4.8 3.3

BVD20 0.80 0.89 0.81 1.80 1.33 3.6 3.7 5.1 6.8 4.3

of the parameter 7 - 7 = 1.0 as originally proposed by Smith (1977) and

7 = 0.1 which is the value that appears to give a good fit to the data in

general. The use of 7 = 0.1 leads to a significant improvement in the

profiles. However, when this value is used, the level of the boundary

layer (e as defined in Equation 78) is set very near or below the level of

the physical roughness (2 mm for the Bakker and Van Doorn data and 5 cm for

the Davies, Soulsby, and King data).

155. The reason for this is that inside the wave boundary layer the

combined shear velocity is found by adding the wave and current shear

velocities instead of defining it by means of the combined shear stress as

done in GM model. This results in a combined shear velocity that is too

high causing excessive retardation of the current within the boundary

layer. Therefore, a good fit is obtained when the boundary layer is kept

very small. Another drawback of this model is that the profile outside the

boundary layer is not exactly logarithmic resulting in a poor fit to the

data.

156. It is seen from Figure 9 that, as in the GM model, different

values of 7 will give a good fit to each of the three profiles. This is a

further indication that a two-layer model is insufficient to represent the

velocity profile.

157. The maximum shear stresses and phase leads predicted by the model

for the Davies, Soulsby, and King conditions are also given in Table 4. As

before, these values are not influenced by the value of I when the current
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shear stress is given. The table shows that the wave shear stresses are

overpredicted by about 50 percent. This is due to the eddy viscosity being

too large in the wave problem. This is further evidence that the

definition of the combined shear velocity in this model is incorrect.

158. As shown in Table 5, the shear stresses predicted for the data

sets BVD10 and BVD20 are quite different for the two values of 7 used.

The current shear stresses obtained with 7 = 0.1 are close to those found

from the GM model, but the corresponding wave shear stresses are

overpredicted.

159. Therefore, it can be concluded that the SM model does not perform

as well as the GM model for any of the data sets regardless of the value

chosen for 7 . The selected eddy viscosity inside the boundary layer is

too high while the form of the eddy viscosity in the upper layer is

incorrect.

160. TS model. The results of the TS model are compared with the data

in Figures 10 and 11. The model does not predict any data set well because

the wave boundary layer thickness is greatly overpredicted in most of the

cases considered. However, even when the boundary layer height is better

calculated, as in the set DVl500, the assumption of a constant eddy

viscosity in the upper layer leads to an incorrect shape of the profile

there as shown in Figure 11.

161. The calculated maximum shear stresses corresponding to the Davies

Soulsby, and King conditions in Table 4 are very close to the values

obtained from the GM model. This is not surprising as the wave problem

formulations in the two models are nearly identical. The wave shear

stresses in Table 5 are also almost the same as from the GM model, but the

current shear stress is much larger.

162. The reason for the poor performance of this model appears to be

the method used to define d , the thickness of the wave boundary layer in a

wave-current flow. The definition in terms of the integral in Equation 81

is an attempt to relate d to the displacement thickness of the boundary

layer. For a pure current with a logarithmic velocity profile, the

eval. .ion of this integral yields d = O.1zj1 while for the current pro' e

derived for this model d = 0.133zli is obtained. In the limit of a pure

wave motion, d = 0.1 ,s obtained with ( defined by Equation 62 with

u*w used in place of ,
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186. The boundary conditions are the no-slip condition at z = z0 =

kn/30 , and the approach to the free stream velocity as z - m Since ud

is defined in Equation 49, the no-slip condition becomes

ud = -1 at ( = (0 = z0/ (109)

which, for Co < a , by use of Equation 103 yields

A[ker(2j() + i kei(2VT)] + B[ber(2VT) + i bei(2V)] = -1 (110)

187. From the condition at infinity it is obtained that

ud - 0 as ( - C (111)

which is satisfied only if F , in Equation 108, is zero since the Kelvin

functions ber and bei become exponentially large as their arguments

approach infinity (Abramowitz and Stegun 1972, Chapter 9). Thus,

F = 0 (112)

188. The remaining conditions necessary to determine the constants are

matching conditions applied at the inner and outer boundaries of the

intermediate region, i.e., at C = a and ( = al , respectively. The

matching conditions require continuity of velocity and velocity gradient

(shear stress) as the boundaries are approached from above and below.

189. Matching of velocities is readily accomplished by use of Equations

103 and 106 and Equations 10b and 10R at C = a and C = a/(

respectively, and results in

Afker(2') + i kei(2V0)] + B[ber(2vfa) + i bei(2v )]

: Ce + De- 4 (113)

and

Ce + De E[ker(2ji/() + i kei(2va/ )] (114)

71



190. Matching of velocity gradients at = Q is obtained from

Equations 103 and 106 and results in

A[ker'(2'i) + i kei'(2Vra)] + B[ber'(2V /) 4 i bei'(2vJ)]

C C e - DVe (115)

while matching of velocity gradients at = a/e , obtained from

differentiation of Equations 106 and 108, yields

cjie - DV1 e -  
- E(ker (2VFI//) + i kei'(2 la/)] (ti' )

191. In Equations 115 and 116 the primes denote differentiation with

respect to the argument of the function. Solution of the five linear

equations, Equations 110, 113, 114, 115, and 116, for the five arbitrary

constants constitutes the solution of the wave problem. Inspection of the

equations involved reveals that the parameters to be specified in order to

obtain a solution are

- k,/30 ; a and f =u(. (117)

192. These three parameters are significant in determining the nature

of the solution: (o expresses the effect of bottom roughness since it

depends on the equivalent Nikuradse sand grain roughness, k1l ; a

expresses the fraction of the wave boundary layer thickness over which the

eddy viscosity is assumed to vary linearly; and C expresses the relative

magnitude of current and combined wave-current shear velocities.

193. In a physical application of the theoretical results presented

above, it is reasonable to assume a scenario in which k1l , the bottom

roughness, u b and W , the waves, and u*(: = V&77p , the average bottom

shear stress, are Known or specified. This leaves a and u*(.w to be

determined before a solution to the wave problem can be obtained. As

alluded to previously, the determination of u*(:w calls for a closure

hypothesis, while a should be regar'ed as a free (fitting) parameter.
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Closure of Wave Problem and Wave Friction Factor

194. In the present analysis, the closure hypothesis is chosen by

specifying that the shear velocity, U*cw , scaling the eddy viscosity in

the wave boundary layer, corresponds to the maximum combined wave-current

bottom shear stress, Tm , i.e.,

u*cw = V_7/ (118)

195. The relation between u*cw and u*w can be found from Equation

58 to be

U*cw = Vl = U*w(l + 2,4 2cos 5 c + '4)4 (119)

with A defined in Equation 59. From the definitions of the parameters

expressing the relative magnitudes of shear velocities, Equations 101 and

59, a relationship between and

/(I + 2p 2 cos~cw + 'U4 ) 4 (120)

is obtained.

196. Thus, the parameter ( , necessary to specify in order to obtain a

solution to the wave problem, may alternatively be thought of as expressing

the relative importance of wa',es and currents, /1 , aid the direction of

the current relative to the waves, 0CW •

197. While the closure hypothesis adopted here defines u*cw and

therefore the eddy viscosity variation, it is not readily seen how its

value is to be determined from knowledge of bottom roughness, kl , and wave

characteristics, u 1 and 0 , other than by trial and error, i.e., assume a

value of u*cw , thereby specifying the necessary parameters given by

Equation 117 with Q assumed known, and then use the definition of the

maximum wave bottom shear stress in conjunction with Equation 119 to see if

the assumed value of u*(:w was correct. This procedure can be facilitated

by the introduction of a wave friction factor.

198. Jonsson (1966) defined a friction factor for pure wave motion fw

by
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Tw = lPfwUb 2  
(121)

199. Here fw represents the entire interaction of the wave motion

specified by ub (ub = ux) with the bottom. For fully rough turbulent

flow, it was found that

= kf J (122)

where

A 2 =u (123)

is the excursion amplitude and kn the equivalent Nikuradse roughness.

Thus Ab/kn is a relative roughness parameter.

200. In analogy with Equation 121, a wave friction factor for the wave-

current problem can be defined as

Tw = O0fwcub2  (124)

where the subscript wc reflects the fact that the increase in bottom

turbulence and thereby bottom wave shear stress due to the current is taken

into account.

201. Introducing this definition of the wave friction factor along with

Equation 119 in the definition of (o as given by Equation 117 one obtains

_0_____ k,/30 1 125
=UC / + 30K Aj,'(25

____-Ku*w(1 + 2LL2cosc +C -)1 (125)C

in which

Ab = -(1 + 2A2cosw + U4 ) 2 = Ab(l + 2'a 2cosw + 0)

and

wc= fwc(1 + 2p2cO)So(w + A4 ) 2  (127)

202. Thus, specifying a value of (0 is identical to specifying a

reiationship between the modified relative roughness, kn1/Ah)' , and the

modified wave friction factor, fw(7'

203. An alternative expression to Equation 124 for the maximum wave

bottom shear stress may be obtained directly from the definition
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TW= lir t.U.bd u } (128)
P - z-4101O"-Z

in which the limit z -4 "0" may be strictly enforced, i.e., z - 0 , or

loosely enforced by evaluating the expression at z = zo , the location

where uw = 0 . In either case, it is expected that the definition of the

bottom shear stress falls within the near-bottom region, z < a& , where ud

is given by Equation 108 and Vt by the first expression in Equation 100.

This shows that very rough flows (i.e., low Ab/kb) are not considered. For

these flows a model such as that of Kajiura (1968) or Christoffersen and

Jonsson (1985) would be appropriate.

204. Introducing the appropriate expressions for Vt and Ud in

Equation 128 and expressing U*(:w as given by Equation 119 results in

1 2. 1u( dui _1 2 = Ku*cw lim dj= Ku*w(1 + 2112cosdj. + I
4 ) 4 lim f -du d

I ( 2C l m

= /u*w(l + 2 2cos cw + 0), lim {j/jA[ker'(2VT)

+ i kei'(2T)] + B[ber'(2VT) + i bei'(2vT)]I} (129)

205. When u*w = p is expressed in terms Df the wave friction

factor defined by Equation 124, this expression may be regarded as an

equation for the modified wave friction factor:

f~w' = V2i/ lim {(V'A[ker'(2VT) + i kei'(2VT)]
(-4"0"

+ Bjker'(2V ) + i kei'(2V) ]I} (130)

206. If the limiting process in Equation 130 is strictly enforced,

i.e., ( - 0 , the asymptotic expansions for Kelvin functions given by

Abramowitz and Stegun (1972, Chapter 9) show that only the term involving

ker' survives the lim -ing process, since

lim{ker'(2 () 1 (131)
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while the remaining terms behave as vin( or V and therefore vanish as

-4 0.

207. For the limit ( - 0 Equation 130 therefore becomes

V'-TI=_I for limit (=0 (132)

while interpreting the limiting process C - "0" in Equation 130 as C = C0
results in

Vr' = EKVTIA[ker' (2V) + i kei' (2 V)]

+ B[ber'(2VT') + i bei'(2Vf)]I for limit ( = C0 (133)

208. The two values obtained from Equations 132 and 133 are practically

identical for small values of (0 (large Ab/kb). For larger values of

C0 , use of Equation 132 leads to values of fie phase lead of the bottom

shear stress over the free stream velocity much greater than 450. For

turbulent flow, this value is expected to be less than 45', which is the

resul. for laminar flow. Also since (0 is the level at which the velocity

is formally set to zero, enforcing the limit in Equation 128 does not seem

consistent. For these reasons Equation 128 is evaluated at C = (o for the

rest of this study.

209. For A|,'/kjj = 1 and ( = 0.1 the value of fw(,' obtained from

Equations 132 and 133 are 0.268 and 0.159, respectively. For A)'/kn =

10.0 , they are 0.056 and 0.063 while for A)'/kjj = 100 , they are 0.022

and 0.0215, respectively.

Modified Wave Friction Factor Diagram

210. Equation 133 can be used to derive a modified wave friction factor

diagram in analogy to the diagrams for pure wave motion derived

theoretically by Kajiura (1968) and semi-empirically by Jonsson (1976).

211. This is done by solving Equations 110, 113, 114, 115, and 116 for

assumed values of (0 , a , and ( . Introducing the calculated values of

A and B into Equation 133 results in a value of f.w' while the

corresponding value of A))' /kn is found from Equation 126. Repeating this
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process for various values of (o with a and E kept constant results in

a modified wave friction factor diagram for that particular combination of

a and f . This shows that for a given a , the wave friction factor fWC

is now a function of three variables, Ab/kn , j , and cosOcw .

212. Figure 12 presents an example of a modified wave friction factor

diagram for several values of ( with a = j The use of the modified

friction factor and relative roughness as defined by Equations 126 and 127

effectively reduces the relationship to a single curve independent of the

value of f . Some dependency on f does become apparent for very small

values of the relative roughness as shown in the expanded figure for small

Ab'/kn .

213. The advantages of using the modified friction factor diagram are

well brought out in Figure 13, which shows the relationship between the

actual friction factor fw. and the actual relative roughness Ah/k 1  for a

range of ( for a co-directional wave current system (Ocw = 0). These

figures show that fwc depends strongly on ( , unlike in the modified

fraction factor diagrams. The collapse of the different lines onto a

single curve will make the use of the diagram much simpler.

214. The parameter a is treated so far as a free parameter to be

determined after comparison with experimental data. Figure 14 shows the

wave friction factor for a pure wave motion (fwc' = fwc = fw) against the

relative roughness for different values of a . These show that the wave

friction factor is essentially independent of a for values of the

relative roughness greater than 20 or so. Some dependency on a is present

for smaller values of the relative roughness as shown in the expansion for

small AI)/kn .

215. Therefore given u) ,W , k1l , and OCW and assuming a value of

, fwc' can be found from the graph. Then fwc can be found from

Equation 127 and uw from Equation 124. This makes the iterative solution

easier to carry out.

Current Problem

216. Having solved the wave problem, the problem of determining the

current velocity profile remains. This problem is governed by Equation 53

with Vt, given by Equation 100. Proceeding with the solution from the
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near-bottom region and up and invoking boundary and matching conditions in

the process, the solution for the current is obtained.

217. For the near-bottom region, z < ab , within which the eddy

viscosity varies linearly, the governing equation for the current becomes

duc U2c (134)

for which the solution, satisfying the no-slip condition at z = z=

k11/30 , is

uC = U*c Uc lnz- (135)
u*cw K z0

218. For the intermediate region, a6 < z < ab/f , the eddy viscosity

is constant and the governing equation is

bduc = 2
Ku*cwa d-z  uC (136)

for which the solution is

u,: = xUc u F - I + n_ Az  (137)

The requirement of matching current velocity at z = a6 is used to

determine the constant of integration obtained from integration of Equation

136.

219. In the outer region, z > Ob/C , the eddy viscosity is again

linear and results in a logarithmic velocity profile given by

u : = u In + C (138)

where z for convenience has been nondimensionalized by the level 0b/C at

which the solution must match the solution given by Equation 137.

220. Performing this matching results in the determination of the

constant C and a current velocity in the outer region given by
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UC = uc[ln[+ 1 + n In- 1 (139)

221. To avoid any misinterpretation of this result, it should be

emphasized that Equation 139, although formally valid in the outer region,

z > ab/C , is limited by the assumption of the validity of "the law of the

wall." Thus, Equation 139 cannot be extended beyond a fraction of the

current boundary layer thickness.

222. In the limit of a small current, i.e., u*c 1K u*cw , the last term

inside the bracket of Equation 139 will be insignificant, and the velocity

profile for large z will be given by

uc N U*C ln (140)
= 

O

223. This equation is the same as that for a pure current, as in

Equation 24, but with zo replaced by the value z0' = ab/ef . In other

words, the bottom roughness seen by the current is no longer given by zo

but by zo' This is the apparent roughness discussed by Grant and Madsen

(1979). It is scaled by 6 , the wave boundary layer thickness, instead of

by kj , the equivalent roughness parameter. For a strong wave motion, 6

may b-- much larger than k1l , leading to an apparent roughness that is much

larger than what would be predicted from a knowledge of the bottom

conditions.

224. In the limit of a very weak wave motion C = u*c/u*(:w I 1

therefore, Equation 139 reduces to Equation 24, which gives the profile for

a pure current.

Comparison with Experimental Data

225. The results of the model developed in the preceding section will

be compared with the same experimental data used in Part III.

Waves alone

226. In the GM model, the problem of a pure wave motion did not involve

any free model parameter. For the present model, however, the parameter a

can be varied, and the most suitable value chosen after comparison with the

data. Figures 15, 16, and 17 present the model results using a = 0.15
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a = 0.3 , and a = 0.5 compared with the three data sets from the physical

experiments. Figure 18 presents the comparison of the instantaneous wave

velocity profiles of Davies, Soulsby, and King (1988) with the predicted

profiles using a = 0.5

227. As shown in the figures, the predictions afforded by the present

model are closer to the data than are those of the GM model in Figures 1, 2,

3, and 4. The boundary layer thickness, the level of the overshoot, and

the magnitude of the overshoot are better represented. Figures 15, 16, and

17 show that the results with a = 0.15 are the best with regard to these

phenomena. This agrees with the results of Trowbridge and Madsen (1984a

and 1984b).

228. However, when considering the flow close to the bottom, Figures 15

and 16 show tlh& tha profiles with a = 0.5 and a = 0.3 show

significantly better agreement with the data than the profiles with

a = 0.15 . Figure 18 shows a similar result with a = 0.5 giving good

agreement near the bottom, particularly when the velocity is a maximum, but

performing less well near the top of the boundary layer. On the other

hand, it is seen in Figure 17 that only the profile with a = 0.15 fits the

data near the bottom while none of the profiles does well towards the top

of the boundary layer.

229. The maximum wave shear strcsses and phase leads corresponding to

the Divies, Soulsby, and King conditions for these values of a along with

the results from the GM model are presented in Table 6. Considering the

shear stress, it is seen that a value of a between 0.15 and 0.3 is

indicated to fit the data. However, for these low lalues of a , the phase

lead is too large with the value for the set DVW05 with a = 0.15 being

almost as much as that for laminar flu,. The phase profiles from the

physical data sets in Figures 15, 16, and 17 indicate that a = 0.3 is the

best value.

230. The above discussion shows that the indications from the

comparisons for a pure wave motion regarding the ontimum value of a are

unclear. a = 0.5 does well for the near-bottom region while a = 0.15

does best for the top of the boundary layer.

Waves and currents

23i. The comp crsan of the predicted current velocity profiles wi.,. the

dIata is shown in Fiqures 19 andJ 20 using the values Q C.15 and 0.5 It
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Table 6

Calculated Maximum Wave Shear Stress and Phase Lead for the Conditions of

Davies, Soulsby, and King (1988) from the GM and the Improved Models

Compared with the Results from Davies, Soulsby, and King (1988)

Wave Shear Stress (Pa) Phase Lead (deg)

Data Davies GM Improved Model Davies GM Improved Model

Sat et al. Model a=0.15 a=0.3 a=).5 et al. Model a=0.15 a=0.3 a=0.5

DVW05 8.1 9.7 6.0 8.9 9.9 28.2 29.6 44.8 39.2 34.4

DVWIO 23.5 27.8 21.0 27.2 28.9 26.4 27.5 42.0 35.2 31.0

DVW15 44.3 52.0 42.3 51.9 54.1 25.2 26.3 37.8 33.1 29.2

was found that a = 0.5 resulted in a very good fit to all the data sets.

It is particularly encouraging that a single value of a fits all three

current profiles in Figure 20, which were for three different values of

ub . This is an improvement over the GM model for which, as shown in

Figure 6, different values of -f are required to give a good fit to each

profile.

232. The maximum shear ztresses predicted for the Davies, Soulsby, and

King conditions using the two values of a are presented in Table 7 along

with the results from the GM model. It is seen that a = 0.5 gives values

that are very close to those from the GM model while the use of a = 0.15

results in a lower shear stress. This is expected because as shown in the

previous section, a = 0.15 gives rise to lower wave shear stresses.

233. The maximum and current shear stresses predicted for the Bakker

and Van Doom conditions are given in Table 8 for the two values of a

along with the results from the GM model using the "best fit" value of

7 = 1.0 . Use of a = 0.15 leads to current shear stresses that are about

50 percent less than the values obtained with a = 0.5 . The effect of this

decrease on the current profiles can be seen in Figure 19, where the slope

of the profile in the outer region does not match the data.

234. However, as shown in Figure 21, the model is unable to fully

represent the change in the profile caused by the change in 0(:w -the

angle between the wave and current. It is seen, however, that the model
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Table 7

Calculated Maximum Bottom Shear Stress for the

Conditions of Davies, Soulsby, and King (1988)

Maximum Shear Stress (Pa)

Data Davies GM Improved Model

Set et al. Model a=0.15 a=0.5

DV0500 13.0 14.7 12.0 14.7

DV1000 28.0 33.1 26.0 34.0

DV1045 27.0 31.7 24.6 32.6

DV1090 24.2 28.2 21.0 29.1

DV1500 48.9 57.3 46.7 59.5

Table 8

Calculated Maximum and Current Shear Stresses for the Conditions of

Bakker and Van Doom from the Improved Model and the GM Model

Current Shear Stress (Pa) Maximum Shear Stress (Pa)

CM GM
Data Model Improved Model Model Improved Model
Set 1=1.0 0=0.15 0=0.5 7=1.0 a=0.15 a=0.5

BVDIO 0.18 0.093 0.19 2.9 1.7 3.0

BVD20 0.80 0.49 0.74 3.6 2.3 3.5

does perform marginally better than the GM model in this respect. For

example, the difference in velocity between the case with 0( w = 90 and

the case with 0('w = 0 in the outer region increases from 2.0 to

2.5 cm/sec. This, however, is still significantly less than the value of

8.5 cm/sec shown by the results of Davies, Soulsby, and King (1988).

Summary

235. All the comparisons with the experimental data show that the model

is an improvement upon the GM model. The results obtained for a pure wave
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motion reproduce the features of the experimental data better than the GM

model. The generated current velocity profiles have a smooth transition

between the wave boundary layer and the current boundary layer. The most

important advance from the GM model is the fact that a single value of a

fits all the data for current profiles in the case of co-directional waves

and currents well.

236. However, the results for the comparison with the wave data suggest

that a value of a = 0.3 or slightly less is the best for the wave problem

while the comparisons with the current profiles strongly indicate a = 0.5

as the best value. The use of a = 0.5 does not result in very drastic

changes to the values obtained in the wave problem and actually does better

in predicting the near-bottom velocity in two data sets. The proportional

change in the value of the overshoot is not very large when a = 0.5 is

used in place of a = 0.15 . On the other hand, use of a smaller value of a

results in significant changes to the current velocity and shear stress as

shown previously.

237. Bearing in mind that the near-bottom wave velocity is more

important for application to sediment transport, it is proposed that

0 = 0.5 be selected as the value of the free parameter in this model. This

value is expected to give good predictions for the current profiles when

Ocw = 0 while not being very much in error for the wave velocity. There

is, however, still a deficiency in the model's representation of waves and

currents at an angle.
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PART V: TIME-VARYING EDDY VISCOSITY MODEL

238. While the time-invariant eddy viscosity model developed in Part IV

gave excellent results for a current velocity profile with waves in the

same direction, it could not adequately represent the effect of a change in

the angle between the waves and the current as shown in the data from

Davies, Soulsby, and King (1988). The results of Davies, Soulsby, and King

also show that the direction of the mean velocity when 0 < 0c, < 9o is

close to that of the mean shear stress only in the outer region, while the

mean velocity closer to the bottom is deflected by the waves. These

features are also apparent in the results of Van Kesteren and Bakker

(1984).

239. The inability of the model to represent these features is a result

of the simple formulation used. It was shown in Part II that once the eddy

viscosity is assumed time-invariant, the linearized boundary layer equation

can be separated into a wave and a current problem. Once this separation

is accomplished, it can be seen that the wave velocity and the current

velocity always lie along the direction of the -ree stream velocity and the

mean shear stress, respectively, regardless of the sophistication of the

eddy viscosity model used. This means that simply using a more elaborate

time-invariant eddy viscosity model will not reproduce the phenomena

discussed above. Instead it seems that in eddy viscosity that varies with

time should be considered. This has been done in Trowbridge and Madsen

(1984a, b) for a pure wave boundary layer, and they obtain features such as

a third harmonic velocity in the boundary layer that are present in

physical experiments but not obtainable if a time-invariant eddy viscosity

is assumed.

240. Therefore in this Part a time-varying eddy viscosity model will be

developed that has a form similar to that used in Trowbridge and Madsen

(1984a, b). The assumption of a weak current is used to obtain tractable

approximate governing equations for the waves and for the current. These

are then solved, and the results compared with the experimental data.
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Derivation of Approximate Equations for Waves and Current

241. The governing equation is the linearized boundary layer equation,

derived in Part II, and identical to the one used in Part IV

S- ;Vp + a a(141)

in which the shear stress (Reynolds stress) on horizontal planes has been

expressed through the concept of a turbulent eddy viscosity

P- = Vt (142)

242. While the separation of the governing equation, Equation 141, for

the combined wave and current flow into its time-varying (wave) and time-

invariant (current) components was readily achieved in Part II, due to Vt

being time-invariant, this separation is far more involved here since Vt

is considered a function of time.

243. To perform the separation the variables u = {u,v} , p , and Vt

are expressed in terms of their time-dependent and time-independent

contributions, denoted by tilde () and overbar (), respectively.

Furthermore, since the wave motion is assumed simple periodic, the time-

dependent contribution is split up into its even and odd harmonics, denoted

by subscripts e , ( )e , and o , ( )0 , respectively.

244. Introducing this notation, i.e.,

u = {u,v} = {u,v) + {(u,Ve} + {u 0 ,v 0 }

p = p + pf + Po (143)

V t = iV + 14. + V0

in Equation 141 and assuming, without loss in generality, the periodic

waves to propagate in the x-direction, i.e., invoking pe = 0 and

Op/Oy = 0 , the x and y components of the governing equation become
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t(ue+uO) 1 (P+P ( + - + ((u+ue+uo)1
P -a P + + (OzV

(144)
a(ve+v0) 1 Dp D F[ )(v+ve+vo)1

+ (V + 1_/e + Oa(v+evo

245. To obtain the equation governing the time-independent (current)

velocity, Equation 144 is time-averaged. Making use of the fact that only

products of even or odd terms contribute to the time-average, this results

in the equations

lVTJ =  [' ';

(145)

[,~ : d ,,,-.+

which, by comparison with Equation 51 of Part Ii, clearly bring out the

wave-influence in the equations governing the current.

246. Subtracting Equation 145 from Equation 144 and collecting even and

odd harmonics, the equations governing the time-dependent (wave) motion are

obtained for the direction of wave propagation

= - - + (V + Le + [ z (146)

- ~ ~ [(F/°z ° -a + f/ '- U +  ['6 J

+ - :1 (147)

and for the direction p-pendicular to the wave direction

a-- = a (V + VeV+j1 j' +[6') (148)
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O e = a o - -do I T[j +- j + I
-at F P -a- 0q + V.TL-J-1 Le-Jz

+F e9 a- [-ye (149)

247. In passing it is noted, by comparison with Equation 48, that the

time-independent current velocity appears explicitly in the equations

governing the wave motion.

Weak current assumption

248. To further simplify the governing equations derived above, the

assumptions of a weak current, expressed through the smallness of the

parameter

= U < 1 (150)
U*w

also used in Part II, without restrictions on its magnitude, is introduced.

249. Since the flow in the immediate vicinity of the bottom scales with

the ratio of the shear stresses, it follows that

o07- 0 (a) (151)

where uo , the odd harmonic wave velocity, is used to represent the wave

velocity since this is expected to be the leading term for a simple

harmonic wave motion.

250. As argued by Trowbridge and Madsen (1984a) and in Part II, the

time-varying eddy viscosity should, in the immediate vicinity of the

bottom, be related to the shear velocity based on the instantaneous (time-

varying) bottom shear stress, 71h(t) , i.e.,

u* = u*(t) = vIrh(t)I/p (152)

251. For a periodic wave motion, u* given by Equation 152 will result

in a shear velocity consisting of only even harmonics (including a constant

time-invariant contribution). The additicn of a small steady shear stress
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on top of the periodic wave shear stress will produce an asymmetry between

the magnitude of the bottom shear stress associated with wave crest and

trough. This asymmetry will, as demonstrated by Trowbridge and Madsen

(1984b), result in odd harmonics appearing in the temporal variation of

252. Based on the preceding arguments, it is therefore reasonable to

assume-subject to later verification-that the terms in the eddy

viscosity expansion given by Equation 143 are related according to

(153)

= 0(g2)

where / is of the order 0.4 (Trowbridge and Madsen 1984a).

253. Using the rough order-of-magnitude estimates presented above

comparison of the first two crms on the right-hand side of Equation 147

suggests

_ = (g2) (154)

Approximate equation for the wave problem

254. Applying order-of-magnitude arguments based-on the preceJing

estimates to Equation 146 reveals that the last term in Equation 146 is of

the order 04/0 ( 1 relative to the smallest of the remaining terms,

ve duo/tt1z , which is of the order .Y . The equation gov!erning the odd

harmonic wave motion in the direction of wave propagation may therefore be

taken as

7 + IjV + ve)d~YI (155)

which is identical to The equation solved by Trowbridqe and Madsen (198 4 a)

for a pure wave motion.
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255. Sinilarly, the last two terms on the right-hand side of Equation

147 are seen to be of order 0 < 1 relative to the remaining terms, which

are of order p2 . Thus, the even harmonic wave problem in the direction of

wave propagation may be approximated by

A = o -o io + a [DI el (156)

256. As mentioned, the smallest term retained in the odd wave problem,

Equation 155, is of order / relative to the leading, 0(1), terms while the

entire expression for the even wave problem, Equation 156, is of order A2

i.e., considerably smaller than the smallest term retained in Equation 155.

It is therefore consistent, as a first approximation, to disregard the even

wave problem.

257. For the wave motion perpendicular to the direction of wave

propagation the forcinq terms are associated with the current, i.e.,

V 0 aV/az and 1 Ov/az in Equations 148 and 149, respectively. It follows

from this that

0 (a I(1)

(157)

- (/3/12)

258. It is therefore entirely consistent with previous approximations

and not surprising that the vwave motion within the boundary layer in the

direction perpendicular to the direction of wave propagation is negligibly

small.

Approximate equations for the current problem

259. Applying order-of-magnitude arguments to the equations governing

the time-independent (current) problem, Equation 145, shows that these may

he apprnyimAtpd by

a r a&] 1 3p a l
d Vdj= -

(158)
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where terms neglected are at most of order 9 relative to those retained.

260. Integration of Equations 158 and 159 from the bottoi, z - 0 , to

the outer edge of the wave boundary layer, z = 6 , gives

E /0 1 - u (160)

[ aPl lv1w-40 10 l -

1 Z. (161)

261. At the outer edge of the wave boundary layer, z = S , the wave

motion will not contribute to the shear stress since here au 0/Oz =

au,,/z L 0 . Also, the contribution of the mean pressure gradient term is

vanishingly small so long as b is well within the current boundary layer

sale, in which case the law of the wall may be applied to the current

problem. At the outer edge of the wave boundary layer, the following

relations therefore hold

I -- u~c{cosocw, sinOcw} (162)

FZ Tz-Z4 6 P

where c , the current bottom shear stress vector, is assumed to be at an

angle Ocw to the direction of wave propagation.

262. In the immediate vicinity of the bottom, z - 0 , Equations 160

and 161 may therefore be written as

_Oa - -K-o
= u*ccos¢CV - VOz -  (163)

N-V u=csinOCW (164)
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which constitute the equations governing the current in the direction and

perpendicular to the direction of wave propagation.

263. It is of particular interest to note that the time-varying eddy

viscosity formulation, in contrast to the time-invariant eddy viscosity

formulation of Part IV, gives rise to a difference between the equation

governing the current velocity components.

Eddy Viscosity Formulation

264. Other than relating the scale of the eddy viscosity to that of the

shear velocity, Equation 152, for the purpose of rough order-of-magnitude

estimates, nothing has been said about its functional form up to now. To

be more specific about the eddy viscosity formulation to be used in the

solution of the wave and current problem, it is assumed that the eddy

viscosity may be expressed as a product of two terms-one accounting for

the temporal, the other for the spatial variability.

265. It is therefore assumed that

Y t = g(z)'f(t) (165)

where f(t) is obtained from the temporal variation of the instantaneous

shear velocity, u*(t) = I -(t)/p.
266. Commensurate with the weak current assumption, the instantaneous

bottom shear stress vector is assumed given by

= {fTcoso + rccosocw, Tcsinc w (166)

where Ti is the magnitude of the first harmonic shear stress at the

bottom, 0 is the phase of the wave, Wt , plus some arbitrary phase angle,

and terms involving even harmonics in the shear stress have been neglected

following the argument justifying that the even wave problem, given by

Equation 156, need not be solved.

267. To obtain the magnitudes of the instantaneous shear stress from

Equation 166 only terms linear in Tc are retained since Tc/Tl = O(A2)

Therefore
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( =bI b = + 2= ccosocwcosoj = icosoI 1 + 2  CW I (167)L =cosO 
]

268. The square root in this expression may be expanded treating the

TC -term as small relative to unity. This assumption is clearly violated

during a short time interval around cosO = 0 ; however, for most of the

wave period, the assumption is a good one, and when it is violated, the

resulting term is indeed small. Therefore, formal expansion of Equation

167 yields

= u z u2,1cosOlII + TCCOS cW (168)

p I icosOJ

269. To obtain an expression for the instantaneous shear velocity in

terms of a harmonic expansion, as assumed in Equation 143, use is made of

the Fourier expansions

I coso1 = 2 1 + 2cos20 +

(169)
IcosO 4
-cosr = -(cc +

which introduced in Equation 168 yields

u2 2 ul 2 1+cos20 + 2 Tccs cosO (170)

and therefore approximately

u, = [u*I 1 + 1cos20 + TCCOSOCWcos0 (171)

This equation can be written as

-L + g2cos[(0w cos0 + 1 cos20 (172)
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and the exact value of u*/u*l is obtained from Equation 167 as

I
= (Cos 2 0 + 2# 2cos5cwcoso + jI4)4 (173)

U*1

270. Equation 172 gives an approximation to Equation 167 in terms of a

constant and first- and second-harmonic terms. The "best fit" values of

the three coefficients in this expansion can alternatively be obtained from

a Fourier expansion of Equation 173.

271. Figure 22 shows the approximate expansion in Equation 172 compared

with the exact expression from Equation 167 and to a "best fit" curve drawn

using the first three coefficients of a Fourier cosine expansion of

Equation 173, using two different values of p and Ocw •

272. The approximate expansion is fairly close to the exact value even

at these very large values of I For the case with Ocw = 0 , the

approximation does worst when the exact value is near zero. However,

because of the persistence of turbulent fluctuation, it is physically

unrealistic to expect the eddy viscosity to vanish during the cycle, and

this failure is therefore not considered a serious shortcoming of the

approximation.

273. The use of the "best-fit" coefficient improves the approximation,

particularly for the case with Ocw = 90 . However, these coefficients must

be calculated for each case numerically; therefore, the expansion with the

final coefficients in Equation 172 is considered sufficiently accurate for

the purposes of the present study.

274. With the temporal variation of the instantaneous shear velocity

given by Equation 171 and choosing the spatial variation used for the time-

invariant eddy viscosity model in Part IV results in the following time-

varying eddy viscosity model

Ku*z z < a16

{: u*ai6 alb < : < f(1740
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with u* given by Equation 171 and the definitions of 6 and f being the

same as those introduced in Part IV with the appropriate moUification due

to the weak current assumption. For example u*cw 2 u*l since the current

is weak so that f = A < 1 and 6 = Ku*I/W . As in the time-invariant

model, a1 is a free model parameter that is determined after comparison

with the experimental data.

275. In the time-invariant eddy viscosity model of Part IV, the eddy

viscosity in the wave boundary layer was scaled by u*cw , which was derived

from the maximum shear stress. This ensures that the slope of the eddy

viscosity profile in the lower region z0 < z < a6 is greater than that in

the outer region.

276. For the time-varying model outlined above, however, it is seen

that the slope of the mean eddy viscosity profile is greater in the wave

boundary layer only if

=uC < 2 (175)

which means that the use of the present model, derived for small p , is

limited by the condition given by Equation 175.

277. The level of the transition from an eddy viscosity scaled by the

wave shear velocity to one scaled by the current shear velocity in Equation

174 is chosen so that the mean eddy viscosity is continuous. This results

in a discontinuity in the instantaneous eddy viscosity at this level

because the eddy viscosity above it is considered time invariant, while

that below varies with time. The time-varying eddy viscosity is due to the

wave motion; therefore, a more logical place to cut off the time variation

would be the top of the wave boundary layer, i.e., at z = 6 . The wave

problem could then be solved for a time-varying eddy viscosity below z =

and a time-invariant eddy viscosity above this level with the solutions

matched at this level. This procedure would, however, be cumbersome to

implement. In practice it is found that the assumed form of the eddy

viscosity above the level z = 6 does not have much effect on the wave

solution. For the solution of the wave problem, it is therefore assumed

that the eddy viscosity variation is as given in Equation 174 but with the

time variation assumed to be present in the upper region as well. As will
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be seen, this makes the solution far less complicated than the procedure

outlined above while not being much in error so long as the level

z = r7l,1bl, is greater than the level z = , This condition will be

satisfied when

= < fi (176)

278. Before proceeding with the solution to the wave and current

problem inspection of Equation 171 in conjunction with Equation 172 shows

that the assumption regarding the order of magnitude of the eddy viscosity

components made in Equation 153 indeed are correct with i = being

small-although not very small-relative to unity.

Wave Problem

279. The equation governing the wave problem is given by Equation 155

and may alternatively be expressed in terms of the velocity deficit

ud = u0 - u (177)
Ub

where u. # u,(z) is the near-bottom velocity predicted by linear potential

wave theory, i.e., governed by

t =- : 1 0 p (178)

280. Introducing these expression in Equation 155, this equation

becomes

Oad ] (179)

where

106



1 + L = 1 + -cos2(Wt + 02) (180)

is obtained from Equations 171 and 172.

281. By introducing a change in the time-variable from t to

defined by

i= 1 + 1 cos2(Wt + 02) (181)

or

Wt = Wt + 1sin2(Wt + 02) (182)

the equation governing the wave motion becomes

Oud = [-dudl (183)

which is identical to the equation governing the time-invariant eddy

viscosity formulation of the wave problem, except that the time-invariant

eddy viscosity in Equation 183 is based on the average shear velocity

rather than the maximum shear velocity used in Part IV.

282. To solve Equation 183, it is necessary to specify the no-slip

boundary condition at the bottom

Ud = u= cosWt (184)ub

in terms of the new time-variable,

283. From Equation 182, treating the factor of (1/6) in front of the

cyclic term as small, the first-order relationship is that Wt = Wt , which

may be introduced in the cyclic term to obtain

- 1

Wt L Wt - Isin2(Wt + 02 ) (185)

284. Substituting Equation 185 for Wt in Equation 184 and expanding

the resulting expression around Wt , consistent with the degree of
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approximation adopted in Equation 185, yields the boundary condition to be

satisfied for z - 0

ud : -cos[Wt - Isin2(Wt + 02) cosw + sinwi [si n 2(W i +

=- ost + -coslt + 22) - + (186)

[ 12 12j

285. The approximation to cos(Wt) is plotted in Figure 23 along with

the exact value for 02 = 30 ° . It is seen from the figure that Equation

186 is an excellent approximation to Equation 184 for this value of 02

which is chosen to be in the range encountered in practice.

2
30.0 eq.

LEGEND
Exact Boundary Condition

S Aoproxinnoton

' 'N

U, /S
C A

- _ --

-2

wt /Rodians

Figure 23. Comparison of the approximate boundary condition of

Equation 186 with the exact value for 02 = 30'
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286. The occurrence of third harmonics in the boundary condition

indicates that the solution will contain this harmonic in addition to the

tundamental harmonic motion. Since Equation 183 and its boundary condition

Equation 186 are linear, a solution of the form

Ud = Re[udlei Wi + ud2e i ( wi + 2 02) + ud3ei(3Wi+202)1 (187)

is assumed. This ensures that Equation 186 is satisfied if

1 1
udi = -1 , ud2 = - 1 ud3 = 1 at z = zo (188)

is imposed as a boundary condition on each part of the solution. The other

boundary condition is

Ud! , Ud2 , ud3 - 0 as Z - D (189)

287. Now the solution for each of the terms ud2 , ud2 , and ud3 can

be found separately. Considering udi , it is seen that the governing

equation and boundary conditions are the same as for the wave problem of

the time-invariant model in Part IV. The only difference is the presence

of the factor -/i in the eddy viscosity distribution. Therefore, the

governing equation can be nondimensionalized as in Part IV with

-u*i (190)

in this case and solved to give five simultaneous equations similar to

Equations 110 and 113 to 116. The only difference will be that a factor

5 appears in the denominator of the terms inside the square root sign of

Equations 110, 113, and 114 and in the numerator of those terms in

Equations 115 and 116.

288. Considering the solution for u(12 , it is seen that the same

equations are obtained as for u(Il with the only difference being that the

first equation will have a value of -1/12 on the right-hand side instead of

-1. Since the right-hand side in the other four equations is zero, cf.
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Equations 113 to 116, this value merely scales the five unknown

coefficients in the solution. Therefore, ud2 can be written as

ud2 = I-2 (191)

289. Finally, it is seen that the solution for the third harmonic term

ud3 will yield five equations similar to those for udi with a factor 3

(3W replaces W) appearing in the numerator of all the terms inside the

square root and a value 1/12 on the right-hand side of the first equation

instead of -1.

290. Therefore, after solution of these two sets of simultaneous

equations the solution can be written as

J ~ u(j, i(wt+262) i(4i22
ud = ReIudle + -2e + u d 3e (192)

It should be noted that the first term in Equation 192 is of zeroth order

in the small parameter assumed in the expansion of the boundary condition,

Equation 186, while the other two terms are of first order.

291. The result obtained so far is in terms of the variable t;

therefore, the solution must be completel by transforming Equation 192 into

the real-time variable t using the relationship between the variables in

Equation 182. To be consistent, this reverse transformation needs to be

carried out to the same order in the small parameter of Equation 185 as was

used in the expansion of the boundary condition to obtain Equation 186.

This means that the term exp(iWt) in Equation 192 must be expanded to

first order while the other two exponentials need be expanded to leading

order only. These expansions result in

eiW i t 1 -e i(t+22) + I i(3wt+20 2 ) (193)e ~ ~ f e 2 +-2- 1312

"i(&)t+202) =ei(Wt+202)(14ee (194)

i(3Wi+20 2 ) _ i(3Wt+20 2 )e =e ( (195)

292. Substituting Equations 193 to 195 into Equation 192 yields
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ud = Re udi e i Wt + sin(Wt+202) + e (3wt+202)[H-i + ud3 (196)

293. The solution of the wave problem is closed, as in the case of the

time-invariant model, by defining the bottom shear stress as in Equation

128. In this case, the definition is

Tb lim [(V +e) 0 ]  (197)
P- = z=z0 u

294. Since t'e deficit velocity in Equation 196 involves first and

third harmonics, the shear stress in Equation 197 will also have first and

third harmonics. By writing

lim |a zll Ou (I I eg1 19 )
Z=Z0[ I - Iu I Z=z0

lim O-- ]- I e i' (199)

z=z01 uz=z0

it then follows from Equation 196 that

- lim I lim
14b LVYJ01Z_1 z= 1jZ

-au(ii [o(Wt+7) - o(Wt+2027) - cos(Wt+202+7))
J=z0 Z=Z0 2

+ COS(3Wt2+7) + Iud3 cos(3Wt+202+U) (200)
12 T_

Z=zO

295. This expression can be substituted into Equation 197 along with

the expression for the eddy viscosities from Equation 180 to obtain an

expression for the bottom shear stress. Let the first and third harmonic

shear stresses be denoted by T1 and T3 , respectively. Then, after

carrying out the substitution in Equation 197 and separating the first and

third harmonics while retaining only those terms of the first order in the

small parameter, the shear stresses are obtained as
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1 Ti _ ~ l I

Ub P z=uk

[cos(Wt+7 ) + T(cos(Wt+202+7) + cos(Wt+202-7)) (201)

296. Now Tj and us1 are related by

L, = u*12 cOs(Wt+0 2 ) (202)

P

297. By rearranging the term giving the time variation in Equation 201,

it is seen that

cos(tWt+7) + 1 [cos(Wt+202+7) + cos(Wt+202-7))
12

- cos(Wt+02 cos(7-0 2 ) + 1coscos02

- sin(Wt+02 ) [sin(7-0 2 ) + 1sin02cos7] (203)

298. From Equation 202, the time variation of TwI is given as

proportional to cos(Wt+02) . Therefore, the second term in Equation 203

must vanish for all t This leads to

02 = tan-[6tan] (204)

and the closure equation, i.e., Equation 201, can be written as

2 P[ au (205)
7 7ub z=z 0

with

cos(7-02) + 1 cos~cos2 (206)

299. Equation 205 is an implicit equation for u*1 and can be solved

by iteration. For small A it is seen that this equation differs from the

closure equation of the time-invariant model only in the presence of a

factor 2-P in Equation 205. From Equations 204 and 205, it is found
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that P = 1.12 for 7 = 300 which is a typical value in practice. This

results in the extra factor in the closure equation having a value of 0.89.

300. As a result of this similarity in the closure equations, it can be

expected that the wave solution from the time-varying model will be close

to that of the time-invariant model. This can be seen in Figure 24, which

compares the wave friction factor for a pure wave motion obtained from the

two models. It is apparent that the friction factors differ by only about

9 percent.

301. It should be noted that the wave friction factor for the

time-varying model plotted in Figure 24 is defined using the magnitude of

the first harmonic of the bottom shear stress, i.e., by

1
Ti = 1Pfwub2  (207)

and not by the maximum bottom shear stress. In the time-invariant model,

the assumption of a constant eddy viscosity resulted in the bed shear

stress containing only a first harmonic component, which meant that the

maximum bed shear stress was equal to the magnitude of that component.

302. Furthermore, since the near-bottom eddy viscosity is scaled by

u*l , the only effect of a current (i.e., A # 0) on the wave problem will be

to impose a linear variation of the eddy viscosity above the level

= QI/l instead of the constant value used in the pure wave problem

(i.e., when p = 0). The wave friction factor in the presence of currents,

fwc , is plotted against Ab/knj in Figure 25 for several values of p It

is seen that fwc is only very weakly dependent on IL . However, the

symbol fwc will still be used to denote the presence of a current.

303. Similarly, after substitution into Equation 197 the third harmonic

shear stress can be written as

u 3 ul d d 1 1 cos(3Wt+20
2+7)

+ I ( 31 cos(3Wt+202+U)I (208)
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304. After manipulating this expression as done for Equation 201, the

third harmonic shear stress can be written as

3= KubuiQcos (3Wt+03) (209)

where

II(u 1 sin(22+7) + 1~u~ in(0+7
03 = tan - 1 z=zo z=z0 (210)

tn 1 1(ui cos(2q02+7) + Vud3 cos(22+0T)

Z=zG z=zOJ

and

__- c~Os(I 2+'1'-Z3) cos(202+0O-03) (211)

305. Therefore the magnitude of the third harmonic shear stress can be

found using Equations 209-211. It is found that the ratio TI/T 3 is 0.115

for Ab/kn = 4 and 0.136 for Ab/kn = 106 . Furthermore, 03 was found to

have almost three times the value of 2 . This means that the peak shear

stress will be very close to the sum of T1 and 73 . In other words, the

peak shear stress is about 12 percent greater that T! . Recalling that the

value of Ti from the time-varying model was about 9 percent less than the

maximum shear stress given by the time-invariant model, it is seeln that the

maximum bed shear stresses predicted by both models will be nearly

identical.

306. The first and third harmonic velocities, denoted by uwl and

Uw3 , can be obtained from Equation 196 as

uwi = ub cosWt + Re udl eiWt + i sin(Wt+202) (212)

and

Uw3 = UbRe ei( 2)[-j-'- + u(13 (213)

Current Problem

307. The governing equations are Equations 163 and 164. The second

term in Equation 163 appears as a result of the eddy viscosity being

allowed to be time-varying. From Equations 172 and 174, it is seen that
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PO = 1p12cosicwcos (Wt+0 2 ) (214)

and from Equation 212, it is found that

= ubRe i ei ) t 2i (215)

308. Let

audl u (z)el(z)(216)=TZ -FU iz)e(216

where 6 is defined in Equation 190 and

U' (z) au-l- (217)

Then

au0 = ubU(Z C t+O1(z) -sin (z)sin(Wt+202
)  (218)

F) cos ] 6-

and the second term on the right-hand side of Equation 163 can be evaluated

as

= = T/p2cosqlcw-r-U (z)! cos[OI(z)-0 2] sinl(z )sin02 (219)
zz s2n 6 s

309. Substituting Equation 219 into Equation 163, dividing by V , and

integrating from zo to a level z gives

S= coscw[ z -_ z{cos[0l(z)-021 - 6sino 1 (z)sin2 Idz

zo zo

(220)

310. Introducing the nondimensional vertical coordinate , defined in

Equation 61, gives
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L COSoCW - U 2 b

-sin( 0lCl1sin02 d( (221)

311. This can be written as

U = COs5cw[II(C) - 12(()) (222)

with

I(¢ : U*C (223)

and

'2(U) = I hubU'(() {cos([ l()-0 2  - isin1(C)sin02}d( (224)

312. Integration of Equation 164 results in

v = Il(()sinocw (225)

313. Equation 222 indicates that the equation for the component of the

current velocity in the wave direction has two terms-the first due to the

mean shear stress and the second due to the time-varying eddy viscosity,

i.e., due to the wave motion. Equation 225, which is for the component in

the direction normal to the wave motion, has only the contribution from the

mean shear stress.

314. Equation 222 can be written as

z

u f J I1s~w~ -R(z) Jdz (226)

zo
where
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R(z) = u cs (227)
u*CT

2
Co5CW

315. Using Equation 214 for the relation between lO and P and

Equation 199 for the definition of p , Equation 227 can be written as

R(z) = (228)

316. The function R(z) gives the importance of the second term, which

is related to the wave motion, to the first, which is related to the mean

shear stress. In the limit as z approaches zo it is seen that

lim [Rlz)]) = .-L j 1 * llim [z -Ocos(Wt+02) 1229)
u*1Z *Z- 4z 0

where the expansion for V from Equation 174 has been used. From the

closure of the wave problem in the time-varying model in Equation 205, this

can be written as

cos(2-7) - -sin02sin7
lim (R(z)] 62P (230)
z-4z0

where 7 is defined in Equation 198 and P in Equation 206.

317. Equation 230 has been evaluated for range of values of IL and

Ab/kb . It is found that the value of R(z) at the bottom lies between

0.423 and 0.428 for 1 < Ab/kb < 106 and for any value of .

318. The above result shows that near the bottom the mean velocity

component in the wave direction, u , increases less rapidly than that in

the direction normal to the waves, v . This means that the value of the

mean velocity will be sensitive to OCW because the partitioning of the

velocity into the two components depends on .cw - It is hoped that this

new mechanism by which the current velocity is linked to Ocw will lead to
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results that are in better agreement with the data than the results of the

time-invariant model, where this mechanism was not present.

319. The integral Ii(() can be evaluated analytically using the eddy

viscosity distribution given in Equation 174 to yield

u-c fi1 ~n[ ( < C<
2'2

() - -- 1 + in[a ] a, < C < (231)

uP47[+ + ln[a, 1 I

F1 11 + 
.

where the constants of integration have been determined by requiring

continuity of the velocity at the various matching levels.

320. Once the wave problem is solved, the values of U'(() and 0i(C)

can be found at any level, thus allowing the numerical integration of 12

Finally, the angle between the current velocity vector and the direction of

waves, Oc , is given by

= tan-I tan(cW)I)] (232)

321. Equation 230 shows that near the bottom 12(() is positive and

less than Ii(C) . Therefore Il(C) is greater than I1(C) - 12((), which

results in Oc > 0cw from Equation 232. In other words, the effect of the

waves is to deflect the current velocity further from the wave direction

than the mean shear stress. Since the second term in Equation 163 is

related to the waves, it can be expected to die out near the top of the wave

boundary layer. Then 12(() will reach a constant value at that level

while Ii(C) keeps on increasing. This will result in the difference

between 0c and OCW decreasing; therefore, at large heights above the

bottom, the direction of the current will approach that of the mean shear

stress. This feature was not present in the time-invariant model, and its

presence here is an indication that the time variation of the eddy

viscosity provides a more complete representation of the problem.



322. It should be noted that when PO is defined by Equation 214, it

is implied that the eddy viscosity varies with time for all values of z

whereas in Equation 174 the time variation is specified only below the

level z = V/7(0(z/p) . As discussed, the wave effects die out around the

level z = 6 , and integral 12 will reach a constant value. Therefore use

of Equation 214 will not lead to significant error so long as the

inequality in Equation 176 holds.

323. Another point to be kept in mind is that al the model parameter

has not been specified as yet. As in the time-invariant model, this is

done by comparing the model results to the experimental data and selecting

a value that gives the best agreement.

Comparison with Experimental Data

324. The results of the time-varying eddy viscosity model are compared

with the experimental data used in the preceding chapter.

Waves alone

325. The first harmonic wave velocity and phase from Test 1 of Jonsson

and Carlsen (1976) are compared in Figure 26 to the predictions from the

time-varying model using three different values of the parameter a1 . It

is seen that the predicted profiles are very similar to those from the

time-invariant model, using the corresponding value of a , that are shown

in Figure 15. The results for the other data sets are also very close to

those from the time-invariant model and will therefore not be presented

here. As shown in Figure 26 the three values of a1 give identical results

near the bottom, which are in good agreement with the data while diverging

at the top of the boundary layer where the agreement with the data is not

that good.

326. The third harmonic wave velocity and phase for the same experiment

are compared with the predictions from the model, using the same values of

a1 , in Figure 27. It is seen that the predicted maximum magnitude of the

results is less than the experimental value by 60 percent or more while the

shape of the velocity profile is obtained reasonably well. The theoretical

phase profile of the third harmonic is similar to the experimental values

but with a shift in the vertical axis. The comparison between theory and

experiment for the third harmonic of Test 2 of Jonsson and Carlsen is
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similar to Figure 27 and is therefore not shown. The agreement with the

data shown in Figure 27 is similar to that obtained by Trowbridge and

Madsen (1984a and b). The data clearly show the existence of a third

harmonic component, thus justifying the inclusion of a time-varying eddy

viscosity.

327. The predicted first harmonic, third harmonic, and peak shear

stresses and the phase of the peak shear stress from the time-varying model

are presented in Table 9 along with the peak shear stress and phase from

Davies, Soulsby, and King (1988). The magnitude of the third harmonic

shear stress is about 11 percent of that of the first harmonic shear

stress. These two shear stresses have nearly the same phase, resulting in

tI._: peak shear stress being the sum of the two components.

328. Figure 24 indicates that the friction factor for the time-varying

model was about 9 percent less than that for the time-invariant model.

This friction factor was defined using the first harmonic shear stress

only. However, when the sum of the two harmonics is considered, ft is seen

that the peak shear stress in the time-varying model is very close to the

peak shear stress of the time-invariant model, which only allowed a first

Table 9

Calculated First Harmonic, Third Harmonic, and Peak Shear Stresses

and the Phase of the Peak Shear Stress for the Conditions of

Davies, Soulsby, and King (1988) frcm the Time-varyiiq Model

Compared to the Results of Davies, Soulsby, and King (1988)

Time Varying Model Results Davies et al.

Shear Stresses (Pa) Phase of Phase of

Peak Peak Peak

Peak Shear Shear Shear
First Third Shear Stress Stress Stress

Harmonic Harmonic Stress deg Pa deg

Data Set al=0.5 1r=0.8 ol=0.5 a1=0.8 0l=0 aO =0 l=0.5 oi=0.8

DVW05 9.3 9.4 1.1 1.1 10.3 10.5 39.4 35.1 8.1 28.2

DVW10 26.9 26.9 3.2 3.2 30.0 30.0 34.8 32.3 23.5 26.4

DVW10 50.3 50.1 6.0 5.9 56.3 56.0 32.9 30.8 44.3 25.2

124



harmonic, shown in Table 6. This agrees with the results of Trowbridge and

Madsen (1984a and b).

329. As in the case of the time-invariant model, the comparison shown

in Figures 26 and 27 indicates that a value of a1 equal to 0.3 or slightly

less will result in the best agreement with the data. However, the higher

values of al agree with the data near the bottom. Therefore, as in the

time-invariant model, determination of a value for al is deferred until

the comparison with the experimental current velocity profile is made.

Waves and currents

330. The current velocity profiles obtained from the time-varying model

using three different values of al are compared with the Bakker and van

Doom (1978) data in Figure 28. The profiles obtained using a1 = 0.8 and

al = 1.0 for the data set BVD10 are in better agreement with the data than

the profile obtained with a1 = 0.5 . Considering the set BVD20, all three

values of a1 give good results with the two higher values doing slightly

better.

331. However, in these two sets, the current is specified by the

velocity at a point in the upper logarithmic region; i.e., the calculated

profile is required to pass through a selected data point. Since the model

also uses a logarithmic profile in the outer region, this means that the

calculated profile will not be very sensitive to the value of a1 .

332. A better test for the appropriate value of a1 is with data sets

where the current is specified by the mean shear stress as in the

conditions of Davies, Soulsby, and King (1988). The results for waves and

currents in the same direction using a1 = 0.5 and a1 = 0.8 are compared

with their results in Figure 29. It is seen that a1 = 0.8 gives a good

fit to the data. This value of a, is greater than the value a = 0.5 that

was proposed for the time-invariant model.

333. There are two reasons for the different values of the model

parameter obtained from the two models. First, the eddy viscosity used in

the time-varying model is based on the mean shear velocity instead of the

maximum shear velocity used in the time-invariant model. These two shear

velocities differ by a factor of 2/T as shown in Equation 172.

Therefore, if it is required to have the same value of eddy viscosity in

the intermediate region nj < z < V2ira 16/,u , it seems that a value of al

around 0.625 should be used.
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334. Second, in the time-varying model, the shear velocity is based on

the maximum wave shear stress rather than the maximum combined shear stress

because the model is derived assuming a weak current relative to the waves

(ja C 1); therefore, the two shear stresses are assumed the same. However,

the value of p for the conditions simulated by Davies, Soulsby, and King

(1988) is in the range 0.26 to 0.61 and is therefore not small. This means

that the value of al must increase further if the eddy viscosity profile

used and therefore the current velocity profiles obtained are to be

similar.

335. When conditions where g is in fact small are considered, a value

of al about 0.65 gives a current profile that matches the profile from the

time-invariant model using a = 0.5 . This change in 01 can also be seen

in the values of Table 10, which gives the current shear stresses obtained

for the conditions of Bakker and van Doorn (1978) for the three values of

al along with the results of the time-invariant model with a = 0.5 . The

data set BVDIO has a value of A = 0.28 while the set BVD20 has U = 0.56

It is seen that for the set BVD10, a value of al between 0.5 and 0.8 gives

the same result as the time-invariant model while al = 1.0 is required to

obtain the same result for the set BVD20.

Table 10

Calculated Maximum and Current Shear Stresses for the Conditions of

Bakker and Van Doorn from the Time-varying Model for Three Values

of al and the Time-Invariant Model with a = 0.5

Current Shear Stress (Pa) Maximum Shear Stress (Pa)

Time- Time-

Invariant Invariant

Time-Varying model Model Time-Varying Model Model

Data Set U1=0.5 al=0.8 al=1.0 a=0.5 al=0.5 01=0.8 al=l.0 a=0.5

BVDIO 0.17 0.21 0.23 0.19 3.0 3.1 3.1 3.0

BVD20 0.67 0.72 0.74 0.74 3.3 3.4 3.4 3.5
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336. The results for waves and the current at an angle are compared

with the results of Davies, Soulsby, and King in Figure 30 for al = 0.5

and al = 0.8 . The figure shows that the time-varying model shows much

greater sensitivity to the angle between the waves and the current than the

time-invariant model shown in Figure 21. The velocity difference between

Ocw = 0 and Ocw = 90 in the upper region is found to be 5.2 cm/sec as

compared with 2.5 cm/sec from the time-invariant model.

337. This improvement is a result of the additional term in the

equation for the current velocity in the wave direction, i.e., in Equation

163. It shows that there is more resistance to the mean flow in the wave

direction than in the direction normal to the wave motion. In the time-

invariant model the angle between the waves and the current, Ocw , only

comes in in Equation 119, which relates the combined shear stress to the

wave and current shear stresses. The only effect OCw has on the velocity

profile is to make u*cw take on different values which results in only a

small change in the profiles unless A is very large.

338. Another result of the time-varying model using two equations from

the two components of the mean velocity is that when 0 < Ocw < 900 , the

direction of the mean velocity vector changes with height above the bottom

as given in Equation 232. The results for the case Ocw = 45' are compared

with those of Davies, Soulsby, and King in Figure 31. As expected from the

form of Equation 92, the model predicts that the current velocity is at a

greater angle to the wave direction than the mean shear stress. However,

the predicted value of this increase is less than the data by about 4,

while the shape of the curve agrees with the data.

339. The comparisons of the current profiles with the experimental data

strongly suggest that al = 0.8 be selected as the value of the model

parameter. The comparison with the pure wave data suggests a value of

al = 0.3 be used. As in the time-invariant model, the model parameter will

be selected so as to give the best agreement with the current profile

because the resulting relatively poor agreement with the pure wave data is

only at the top of the wave boundary layer, a region that is not of great

importance in likely applications of the theory.

340. Therefore Q = 0.8 is taken as the model parameter. There is,

however, an indication that a smaller value of al (around 0.65) will be

more suitable in cases where 1 is small. Nevertheless, Figures 28, 29,
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Figure 31. Comparison of the angle that the current velocity vector is

deflected from the direction of the mean shear stress for the case

Ocw = 450 of Davies, Soulsby, and King (1988) with the results of the

time-varying model with a1 = 0.5 and al = 0.8

and 30 show that al = 0.8 give good agreement for conditions with /

ranging from 0.25 to 0.6. This is seen as sufficient evidence to adopt

that value for the model.

Simplification of Current Problem

341. The time-varying model presented in this chapter is able to

represent the wave-current interaction better tian the time-invariant

model. This improvement was gained at the cost of requiring a numerical

integration to obtain the current velocity profile. If a simple analytic

form of this integral can be obtained, the solution of the current problem
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of this model will be no more complicated than that of the time-invariant

model.

342. As given in Equation 226, the current velocity in the wave

direction can be written as

S u*cc1scw - R(C)]d (233)

with P defined by Equation 174 and 6 by Equation 190. Equation 229

indicates that the value of R(() is between 0.423 and 0.428 at z = z0

R(() represents the effect of the wave motion on the current profile and

can be expected to die out at a height above the bottom that is scaled by

the wave boundary layer thickness.

343. Therefore, the simplest approximation for R(() will be a linear

variation from a value of 0.425 at z = zo to zero at z = 6 with the

value being zero for z > 6 . In terms of the nondimensional vertical

coordinate , this can be written as

R(() = + (234)

where
0.425A = 1--- (235)

and
0.425

B = 1 -- (236)

Then u can be written as

U = coSOcw[I1() - 12(()] (237)

where 11(C) has been evaluated and is given by Equation 231. The integral

12(() is given by

12() u*c2cos cw 6 A+BO d( (238)

(0 V
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with A and B from Equations 235 and 236.

344. Using P from Equation 174, this can be evaluated analytically

The form of the solution depends on whether the level z = b is above or

below the level z = (6i1/-)1)/p . As mentioned in the discussion following

Equation 174, the theory developed so far can be considered justified so

long as Equation 176 holds, i.e., (VF2/afl)/A > 1 holds. Since al = 0.8

has been selected for the time-varying model this reduces to A < 0.64 .

345. When this condition is satisfied, the solution for 12(() can be

obtained by carrying out the integration in Equation 238 and obtaining the

constants by requiring a solution to be continuous across the level

z = a 1 . 12(() is found to be

[u~Tf'rp[A ln[FIBC-C) (<a,

+B [2 +B(alCo)] a,<C<l (239)12(() = ucFr[[-]- a]+l

U*f TP[A[ln["±] +k-l] 1[a i+!7-2Co] >

where it has been assumed that a < 1

346. Therefore Equations 231 and 239 can be used to find the current

velocity profile without the need of numerical integration. The solution

for the conditions of Davies, Soulsby, and King (1988) using Equations 231

and 239 is compared with that obtained by numerical integration in

Figure 32. Equation 239 is a very good approximation to the exact value of

12(C) . It has been found that the approximation is good for a large range

of A and Ab/k|, ; so Equation 239 can be used with confidence in the

current solution.

Summary

347. An eddy viscosity model that included time variation was

considered in this Part. The assumption of a weak current relative to the

waves was made in order to obtain simplified approximate equations for the

wave and current motions. The wave problem was similar to the wave problem

of the time-invariant model.
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348. The approximate equations for the current showed that the

component of the mean velocity in the wave direction is governed by a

different equation from that which governs the mean velocity in a direction

normal to the wave motion. This results in a significant increase in the

sensitivity of the current velocity profile to Ocw , the angle between the

waves and the current, in agreement with experimental evidence. Another

feature is the variation with height of the direction of the mean velocity

when 0* < Ocw < 90' -a feature that was not present in the time-invariant

model but was indicated by the sophisticated numerical models.

349. However, the time-varying model is derived only for small values

of A and bases its eddy viscosity on the wave shear stress only. This

results in the shear velocity used in the time-varying model, unlike the

time-invariant model, being insensitive to the magnitude or the direction

of the current. When p is small, this effect is negligible, but it may be

significant for stronger currents.

350. Thus, the time-varying model includes a sensitivity to Ocw that

is not present in the time-invariant model while neglecting an effect that

could be important at higher values of A . It should also be remembered

that the solutions obtained are expected to be good only for a < V2_/_a 1

351. These objections notwithstanding, comparisons with the

experimental data indicate that the selection of al = 0.8 gives good

agreement with all the data sets. The agreement for waves and the current

in the same direction is as good as from the time-invariant model while the

agreement for waves and the current at an angle is much better than that

from the time-invariant model. A value of al around 0.65 is indicated as

more suitable for conditions with smaller (< 0.1) values of p .

352. The simple analytic approximation to the integral in the current

solution is very close to the numerical solution. Therefore, the time-

varying model with al = 0.8 and the current solution given by Equations

231 and 239 is proposed as a simple model for the problem of a current in

the presence of waves.
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PART VI: MODEL SIMPLIFICATION, APPLICATION, AND EXAMPLE CALCULATIONS

353. In this Part the problem of predicting the current velocity

profile in the presence of waves, using the time-varying model, will be

treated in detail. The information needed to solve the problem is

specified along with the equations needed for the solution. The solution

for the friction factor is then simplified to an analytic form. The

solution procedure is then outlined and illustrated with two example

calculations.

Problem Specification

354. To apply the wave-current theory developed in Part V, it is

necessary to specify the bottom roughness in terms of its equivalent

Nikuradse sand grain roughness, kn , and the wave motion in terms of its

period, T , and near-bottom orbital velocity ub = Ab2T/T , i.e.,

kn , W = 2X/T , and ul) = A)& (240)

must be known.

355. The specification of the current may either be in terms of the

average bottom shear stress and its direction relative to the wave motion,

i.e.,

2Tc = pu ¢ and 0cw (241)

or in terms of the current magnitude, at a given level, z = zr , assumed to

be outside the wave boundary layer and its direction relative to the waves,

i.e.,

uc(z = Zr) and 0C (242)

356. The objective is to calculate the current velocity profile outside

the wave boundary layer once the conditions given above are specified. The

current velocity in the outer region is given from Equations 222 and 225 as
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uc = {(II(C) - I2(()] 2coS 2ocw + II(()2sin2ocw}i (243)

357. The value of Ii(() in the outer region is given by Equation 231

as

111 in + 1 + - 1 (244)

358. The integral 12(() can be approximated in the outer region by

Equation 239. Using Equations 235 and 236, this can be written as

u*c OT .425[ Fal 0.5 a'1  1+(
12(() I + u2 I -- - + a 2(0 (245)

359. The angle between the current velocity and the waves, OC , is

related to Ocw by Equation 232, i.e.,

c(() = tan- 1 ti(O) O (246)

360. To illustrate the procedure to obtain the various quantities that

appear on the right side of Equation 244, it is convenient to restate the

definitions of these quantities defined in earlier chapters. Thus,

= u*C (247)

gives the relative strength of the current motion to the wave motion. The

wave shear velocity is related to u b , the near bottom wave velocity, by

U*l = -Ul (248)

while the values 6 and Co in Equation 244 are defined by
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6 u* (249)W

(0 k, (250)

361. The problem is closed by relating fwc to the parameter AL)/kn

and A through Equation 205. Note that al is no longer a free parameter

but has been selected, based on the comparisons presented in Part V, to

take on the value of 0.8. However, solution of Equation 205 is complicated

as it involves the solution of five simultaneous complex equations and the

use of Kelvin functions. Thus, apart from the determination of fwc , it is

seen from the equations listed above that the remainder of the problem is

in a form that can be solved using no more powerful computational tools

than a hand calculator. Therefore, if a simplified form of Equation 205

can be found, the application of this theory to practical problems will be

significantly facilitated.

Simplified Wave Friction Factor Determination

362. As seen in Figure 25 the wave friction factor in the presence of

currents is only a very weak function of A -the parameter that gives the

strength of the current relative to the waves. Thus, for practical

applications it suffices to consider

fwc = f Ab] (251)

which means that the entire closure problem effectively collapses to a

single curve in the wave friction diagram.

363. It is of interest to examine how closely this curve is represented

by the GM model's closure which may be obtained from Equation 71, with A

given by Equation 65, and reads

~ ker'(2VT) + i kei'(2V7I (252)

ker(2V O) + i kei(2VT7)
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364. The wave friction far ir obtained from the GM model, Equation 252,

is compared with the wave friction factor from the time-varying model with

al = 0.8 and A arbitrarily chosen to be 0.2, in Figure 33. The figure

shows that the two friction factors have very similar variations with Ab/kn

with the value from the time-varying model being less by about 9 percent.

365. Using the asymptotic expressions for Kelvin function in the limit

of (o - 0 , given by Abramowitz and Stegun (1972), and following the

development of Grant (1977), the asyn,ptotic form of Equation 252 becomes

I + loglo f log1 0 - M (253)

with M = 0.17 This expression is identical to the semi-empirical wave

friction factor formula obtained by Jonsson and Carlsen (1976) when M is

taken as 0.08.

LEGEND

7 Tme-voryinq Model
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Figure 33. Wave-current friction factor from the time-varying model with
= 0.2 compared with the wave friction factor from the GM model and the

approximation given by Equation 254 and 255
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366. It is evident from the form of Equation 253 that the actual value

of M is immaterial as Ab/kn becomes large. Thus, rather than using the

theoretical value of M = 0.17 , a value of M = -0.1 in Equation 253 was

found to give a better representation of the "exact" wave friction factor

from the time-varying model for intermediate values while not sacrificing

the accuracy for large values of Ab/kn • For this reason, the modified

friction factor may be obtained from the equation

1 rl lgj[]
1 logbo - -  o + 0.1 (254)+4 /~ og oLgl [knJ

which, for values of Ab/knj > 103 , is readily solved by iteration. The

modified wave friction factors, fwc , obtained from Equation 254 are

compared with the exact values in Figure 33, and the agreement is seen to

be excellent for values of Ab/kn > 1,000

367. For lower values of Ab/k1 , the accuracy of the approximation

afforded by Equation 254 deteriorates. However, for the range Ab/kn <

1,000 , the modified wave friction factor may, following Swart (1974), be

expressed as

rAb -0.19 1A1 -1.2
fwc = exp 5.2 - 6.1 - 0.24 j[k (255)

which, as demonstrated in Figure 33, provides an excellent (and simple)

representation of the exact formulation for Ab/kn < 1,000

368. Thus, the cumbersome procedure of solving five simultaneous

complex equations and solving Equation 205 by iteration can, for

applications, be replaced by the relatively far simpler evaluation of fwC

from Equation 254, for At)/kI > 1,000 , and Equation 255, for Ab/kn <

1,000

Solution Procedure

369. The procedure to be followed depends on whether the current is

specified by Equation 241 or by Equation 242. The procedure for each case

is described in the next two sectio
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Solution for a current
specified by the bottom shear stress

370. In the simplification of the wave problem described in the

preceding section, the wave friction factor, fwc , which was only a very

weak function of the current, is assumed completely independent of the

current magnitude and direction. This makes the solution straightforward.

The procedure is described a step at a time:

a. Calculate the value Ab/kn1 from the given wave conditions
and bottom roughness.

b. Calculate fwc using the appropriate equation, Equation 254

or 255.

c. Find u*i using Equation 248.

d. Find A from Equation 247 and 8 from Equation 249.

371. Now all the quantities needed to evaluate the curnznt velocity

profile are known; therefore uc and OC can be found at any height above

the bottom using Equations 243-246.

Solution for the current specified
by its magnitude and direction at z = Zr

372. The procedure in this case is more complicated because u*c and

Ocw are both unknowns to be determined as part of the solution. This

requires an iterative procedure.

373. As before, the wave friction factor can be calculated first since

it is independent of the current. The steps are:

a. Find Ab/k n from the given wave properties and bottom

roughness.

b. Calculate fwc using the appropriate equation, Equation 254

or 255.

c. Find u*w , I , and 6 from Equations 248, 247, and 249,

respectively.

374. Now it can be seen that all the terms on the right side of

Equations 244 and 245 are known except u*c . An initial estimate for u*c

can be obtained by assuming that waves are not present and that the

velocity is logarithmic. This leads to

U*c(O) = Kuc (256)
1n(z ./z0)

where the superscript denotes the stage of the iteration. A good initial

estimate for OCw is the angle between the current and the waves, i.e.,
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OCW( 0 ) = Oc (257)

375. The next steps of the procedure are as follows:

d. Calculate values for Uc and OC, termed uc' and 0c'

respectively, using Equations 243-246

e. Update the estimates of u*c and Ocw using the relations

u*C = -,- u¢ ( 0  (258)
UC

OCIW = OCW( °1 + (Oc - Oc') (259)

376. Steps d and e are repeated until the values of uc and Oc

converge.

Example Calculations

377. Two example calculations are presented to illustrate the

procedures outlined in the preceding section, one for each method of

specifying the current.

Example 1

378. The chosen wave and bottom roughness parameters are

Ub = 25.7 cm/sec F W = 3.14 sec -  , k1n = 2.1 cm (260)

and the current is specified by

u*c = 1.45 cm/sec , Ocw = 0° (261)

379. From the values in Equation 260, it is found that

Ab = 3.9 (262)kn

so that Equation 255 will be the appropriate equation for the wave friction

factor. Use of this equation results in

f = 0.077 (263)
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and from Equations 247-250, it is seen that

A = 0.28 ; b = 0.64 cm ; (0 = 0.109 (264)

380. Equation 264 along with the given value of u*C can be used in

Equations 243-245 to calculate the current velocity profile. The velocity

at z = 4.6 cm is found to be 8.2 cm/sec. This shows that the solution

obtained is correct because the conditions specified by Equations 260 and

261 correspond to the data set BVDIO and the value of uC given was that

calculated in Part V. The current specification for the set BVD20 was

uc = 8.2 cm/sec at z = 4.6 cm , which is the same value as obtained

above. If the full velocity profile is desired, it may of course be

calculated from Equations 231 and 239.

Example 2

381. The chosen wave and bottom roughness parameters are

ub = 100 cm/sec , kn = 15 cm , = 0.785 sec -1  (265)

and the current is specified by

uc = 49.3 cm/sec , Oc = 480 at z0 = 88.5 cm 1266)

From Equation 265, it is seen that

= 8.5 (267)kn

so here too Equation 255 should be used to calculate fw( . Using this

equation along with Equations 247-250 results in the following parameters

for the wave boundary layer

6 = 8.3 cm , u*i = 16.3 cm/sec (0 = 0.06 (268)

These values can be substituted in Equations 244 and 245 along with

17= 0.8 , K = 0.4 , and the definition of g to express Il and 12 with

U*C the only unknown. The equations are
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II(Zr) = 2.5 U*c[ln(l. 0 2 5 u*c) + 0.1 2 2U*c + 1] cm/sec (269)

I2(zr) = 0.163u*c2 cm/sec (270)

where U*c is in cm/sec. These two expressions make steps d and e of the

solution much easier to carry out. The values of use , cw , I , 12

uc' and 0c' at each step of the iteration are given in Table 11. The

convergence is fairly rapid.

382. The calculated value of u*c is 5.92 cm/sec and Ocw = 44.7°

which indicate that the solution is correct because the conditions

specified by Equation 265 correspond to the data set DV1045 (i.e.,

U*C = 5.92 cm/sec, Ocw = 45°) and the specified current velocity and

direction were taken from the profile generated for that data set, which is

presented in Figure 30.

Table 11

Example Calculation for a Current Specified by

Its Velocity and Direction at a Height z =z

Iteration u*c OCW Ij 12 uc 0c
Level cm/s deg cm/s cm/s cm/s deg

0 3.81 48 26.9 2.4 25.7 50.6

1 7.31 45.3 71.4 8.7 67.2 49.0

2 5.36 44.3 45.0 4.7 42.7 47.4

3 6.19 44.9 55.8 6.2 52.7 48.3

4 5.79 44.6 50.5 5.5 47.8 47.9

5 5.97 44.7 52.8 5.8 50.0 48.0

6 5.88 44.7 51.7 5.6 49.0 48.0

7 5.92 44.7 52.2 5.7 49.4 48.0
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PART VII: CONCLUSIONS

383. The objective of this study was to develop a model of the

interaction between the turbulent wave and current boundary layers. It was

required that the model be simple enough to permit efficient analytic

solutions while at the same time being able to capture the important

aspects of the problem. The simple closure of the turbulence problem by an

assumed eddy viscosity model was selected, and only the case of turbulent

flow over a fixed, horizontal bed was considered.

384. As a first step, the development of such models for the wave and

wave-current problems as given in the literature was reviewed. It was seen

that many of the models proposed in the literature had not been verified by

a comparison with experimental or field data. Therefore, three of the more

recent models were selected and compared with experimental data from the

wave and wave-current boundary layers. These models differed in the

definition of the velocity scale for the eddy viscosity and in the assumed

vertical structure of the eddy viscosity.

385. The comparisons indicate that the model of Grant and Madsen (1979

and 1986) is the most successful of the existing models considered in

representing the available experimental data. The distinguishing features

of this model are the use of the current shear velocity to scale the eddy

viscosity in the outer layer, the use of the maximum shear stress to define

the combined shear velocity inside the wave boundary layer, and the use of

a boundary layer length scale based on the maximum shear velocity.

386. The resulting current velocity protile is logarithmic in both

layers-a feature shown by the experimental data. The flow in the outer

region is similar to the pure current case except that the bottom

resistance is increased due to the added turbulence contributed by the wave

motion within the wave boundary layer.

387. The main disadvantage of the GM model is that it uses an eddy

viscosity that is discontinuous at the edge of the wave boundary layer.

This formulation is not physically realistic and leads to a poor

representation of the current velocity profile in the transition region

between the wave boundary layer and the current boundary layer.

388. The improved model discussed in Part IV attempts to remove this

drawback by using a more complicated but more realistic continuous vertical
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structure of the eddy viscosity. This results in a somewhat more complex

solution procedure. However, it should be noted that the model still

involves only one free parameter, as does the GM model. Therefore, the

fact that this model gives better agreement with the data than the GM model

can be attributed entirely to the more realistic eddy viscusity formuvati-n

and not to the use of more model parameters.

389. Two different values of the free model parameter were suggested

from the comparisons with the wave and wave-current experimental data. A

single value (0 = 0.5) was selected as a reasonable compromise on the

grounds that it gives a good representation of the current velocity

profiles while not being seriously in error for the wave boundary layer.

390. The rather complicated solution of the wave problem in this model

was simplified by the introduction of the modified friction factor and

excursion amplitude defined in Part IV.

391. While the improved model gave excellent results for a current

velocity profile with waves in the same direction, it could not adequately

represent the effect of a change in the angle between the waves and the

current. The deflection of the current velocity away from the direction of

the mean shear stress, which was a feature of sophisticated numerical

models, was also not represented by the time-invariant model.

392. These drawbacks were a result of the eddy viscosity being assumed

time invariant. Therefore, a model that included time variation of the

eddy viscosity was developed in Part V. The assumption of a weak current

relative to the waves (small A) was made to obtain tractable approximate

governing equation for the waves and for the current. The equations thus

derived for the current included an explicit dependence on the angle

between the waves and the current, in contrast to the time-invariant

models.

393. While the time-varying model involved much more algebra than

before, the final solution for the wave problem was shown to be very

similar to that from the time-invariant model. After comparison with the

experimental data, the value of the free model parameter was chosen to be

01 = 0.8 This value provided good agreement even with data sets where the

value of p was not very small. The solution of the current problem

involved numerical integration, but a simple, accurate, analytic

approximation was developed that made this unnecessary. The result was a
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model that allowed an analytic evaluation of the current velocity profile

just as in the time-invariant model. However, as shown in Figure 30, this

model is much more sensitive to the angle between the waves and the current

than previous models. Therefore, this model is presented as a simple but

realistic model for the problem of a current in the presence of waves.

394. The similarity of the wave friction factor diagrams from the time-

varying and GM models was used in Part VI to develop analytic

approximations to the friction factor, thereby avoiding the use of Kelvin

function and the solution of complex simultaneous equations. A procedure

was outlined whereby practical problems could be solved efficiently using a

no more powerful tool than a hand calculator. This procedure can also be

incorporated with ease into a computer program.
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APPENDIX A: NOTATION

A complex constant

Ab excursion amplitude

Ab' modified excursion amplitude

B complex constant

c wave celerity

C complex constant

d boundary layer thickness in TS model in Part III

D complex constant

E complex constant

fw wave friction factor

fwc wave friction factor in the presence of currents

fwc modified wave friction factor

F complex constant

g acceleration due to gravity

h flow depth

Ij(z) integral in solution for current velocity profile in time-varying

model

I1(z) integral in solution for current velocity profile in time-varying

model

k wave number

kb physical scale of bottom roughness

kn equivalent Nikuradse roughness

K' parameter in TS model in Part III

1 mixing length

1 height of boundary layer in GM and SM models in Part III

L length scale

p pressure

Pw pressure due to wave motion

Pc pressure due to current motion

p pressure just outside wave boundary layer

P constart in the time-varying model Equation 206

Q constant in the time-varying model Equation 211

R(z) ratio of 12(Z) to If(z)

A-I



s parameter in TS model in Part III s = d/zh

t time

t transformed time variable Equation 182

u horizontal velocity in wave direction

ub magnitude of near-bottom wave velocity

uc current (mean) velocity

ud complex nondimensional wave deficit velocity

ud complex nondimensional wave deficit velocity in time-varying model

Udi component of Ud

ud2 component of Ud

U(13 component of ud

UW wave velocity

uw1 first harmonic wave velocity in time-varying model

uw2 third harmonic wave velocity in time-varying model

u turbulent velocity fluctuation about the mean

u* shear velocity

u*c current shear velocity

u*CW combined wave-current shear velocity

U*m shear velocity based on maximum shear stress

u*W wave shear velocity

u ! shear velocity due to first harmonic wave shear stress in time-varying

model

U velocity scale

U'(z) nondimensional gradient of u(II Equation 217

V horizontal velocity in direction normal to wave direction

w vertical velocity

w turbulent fluctuation in vertical velocity

x horizontal coordinate in wave direction

y horizontal coordinate in direction normal to waves

z vertical coordinate

zh flow depth

Zr reference level at which current is specified

za bottom roughness parameter zo = k11/30

A-2



a free parameter in improved time-invariant model

a! free parameter in time-varying model

0 parameter in TS model 3 = d/L
7 free parameter in GM and SM models in Part III

7 argument of dudl/dz at z = zo in time-varying model

6boundary layer length scale

C ratio of current shear velocity to combined shear velocity

nondimensional vertical coordinate ( = z/6

(h nondimensional flow depth

o phase of bottom shear stress 0 = Wt +

K Van Karman's constant K = 0.4

A ratio of current shear velocity to wave shear velocity

V molecular viscosity

Vt turbulent eddy viscosity

p density

T shear stress

Tij shear stress in direction j on plane normal to direction

Tb  bottom shear stress

Tbm maximum bottom shear stress

Tc  bottom shear stress due to current

Tw bottom shear stress due to waves

0C angle made by current velocity vector with wave direction

0cw angle between waves and th2 current

02 phase of first harmonic bottom shear stress

03 phase of third harmonic bottom shear stress

W angular frequency

Re real part of a complex number

] ] modulus of a complex number

V horizontal gradient operator

Superscripts

- mean value of a quantity

- vector quantity

(0), (1) levels of iteration in the solution procedure of Part VI

time-varying portion of a quantity
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Subscripts

c concerned with the current motion

e even harmonics of a time-varying quantity

o even harmonics of a time-varying quantity

w concerned with the wave motion

A-4


